RUS  ENG
Full version
PEOPLE

Urusov Mikhail Aleksandrovich

Publications in Math-Net.Ru

  1. On the representation property for 1d general diffusion semimartingales

    Teor. Veroyatnost. i Primenen., 69:4 (2024),  729–744
  2. Sequential tracking of an unobservable two-state Markov process under Brownian noise

    Sequential Anal., 40:1 (2021),  1–16
  3. Minimal embeddings of integrable processes in a Brownian motion

    Uspekhi Mat. Nauk, 74:5(449) (2019),  185–186
  4. A functional limit theorem for irregular SDEs

    Ann. Inst. H. Poincaré Probab. Statist., 53:3 (2017),  1438–1457
  5. Numerical approximation of irregular SDEs via Skorokhod embeddings

    J. Math. Anal. Appl., 440:2 (2016),  692–715
  6. Processes that can be embedded in a geometric Brownian motion

    Teor. Veroyatnost. i Primenen., 60:2 (2015),  248–271
  7. On the submartingale/supermartingale property of diffusions in natural scale

    Trudy Mat. Inst. Steklova, 287 (2014),  129–139
  8. Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation

    Teor. Veroyatnost. i Primenen., 54:1 (2009),  80–96
  9. On a property of the moment at which Brownian motion attains its maximum and some optimal stopping problems

    Teor. Veroyatnost. i Primenen., 49:1 (2004),  184–190
  10. The use of separating times in proving singularity of Gaussian measures

    Uspekhi Mat. Nauk, 58:4(352) (2003),  163–164
  11. Separating times for measures on filtered spaces

    Teor. Veroyatnost. i Primenen., 48:2 (2003),  416–427
  12. Optimal forecasting of the time of attaining the maximum by Brownian motion

    Uspekhi Mat. Nauk, 57:1(343) (2002),  165–166
  13. No-arbitrage conditions in discrete financial models

    Uspekhi Mat. Nauk, 54:5(329) (1999),  179–180

  14. Summer School in Stochastic Finance 2010

    Teor. Veroyatnost. i Primenen., 55:4 (2010),  825
  15. Information on the Fourth “Student Kolmogorov olympiad on the theory of probability”

    Teor. Veroyatnost. i Primenen., 50:2 (2005),  411–413


© Steklov Math. Inst. of RAS, 2024