RUS  ENG
Full version
PEOPLE

Tertychnyi Sergei Ivanovich

Publications in Math-Net.Ru

  1. On the Monodromy-Preserving Deformation of a Double Confluent Heun Equation

    Trudy Mat. Inst. Steklova, 326 (2024),  330–367
  2. Categories of Symmetry Groups of the Space of Solutions of the Special Doubly Confluent Heun Equation

    Mat. Zametki, 110:5 (2021),  643–657
  3. Group algebras acting on the space of solutions of a special double confluent Heun equation

    TMF, 204:2 (2020),  153–170
  4. Solution space monodromy of a special double confluent Heun equation and its applications

    TMF, 201:1 (2019),  17–36
  5. Representations of the Klein Group Determined by Quadruples of Polynomials Associated with the Double Confluent Heun Equation

    Mat. Zametki, 103:3 (2018),  346–363
  6. Automorphisms of the solution spaces of special double-confluent Heun equations

    Funktsional. Anal. i Prilozhen., 50:3 (2016),  12–33
  7. On a Remarkable Sequence of Bessel Matrices

    Mat. Zametki, 98:5 (2015),  651–663
  8. Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction

    TMF, 182:3 (2015),  373–404
  9. Dynamical systems on a torus with identity Poincaré map which are associated with the Josephson effect

    Uspekhi Mat. Nauk, 69:2(416) (2014),  201–202
  10. Explicit solution family for the equation of the resistively shunted Josephson junction model

    TMF, 176:2 (2013),  163–188
  11. A system on a torus modelling the dynamics of a Josephson junction

    Uspekhi Mat. Nauk, 67:1(403) (2012),  181–182
  12. Rotation number quantization effect

    TMF, 162:2 (2010),  254–265
  13. Mathematical models of the dynamics of an overdamped Josephson junction

    Uspekhi Mat. Nauk, 63:3(381) (2008),  155–156
  14. On properties of the differential equation describing the dynamics of an overdamped Josephson junction

    Uspekhi Mat. Nauk, 59:2(356) (2004),  187–188
  15. On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$

    Uspekhi Mat. Nauk, 55:1(331) (2000),  195–196


© Steklov Math. Inst. of RAS, 2025