RUS  ENG
Full version
PEOPLE

Tertychnyi Sergei Ivanovich

Publications in Math-Net.Ru

  1. Categories of Symmetry Groups of the Space of Solutions of the Special Doubly Confluent Heun Equation

    Mat. Zametki, 110:5 (2021),  643–657
  2. Group algebras acting on the space of solutions of a special double confluent Heun equation

    TMF, 204:2 (2020),  153–170
  3. Solution space monodromy of a special double confluent Heun equation and its applications

    TMF, 201:1 (2019),  17–36
  4. Representations of the Klein Group Determined by Quadruples of Polynomials Associated with the Double Confluent Heun Equation

    Mat. Zametki, 103:3 (2018),  346–363
  5. Automorphisms of the solution spaces of special double-confluent Heun equations

    Funktsional. Anal. i Prilozhen., 50:3 (2016),  12–33
  6. On a Remarkable Sequence of Bessel Matrices

    Mat. Zametki, 98:5 (2015),  651–663
  7. Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction

    TMF, 182:3 (2015),  373–404
  8. Dynamical systems on a torus with identity Poincaré map which are associated with the Josephson effect

    Uspekhi Mat. Nauk, 69:2(416) (2014),  201–202
  9. Explicit solution family for the equation of the resistively shunted Josephson junction model

    TMF, 176:2 (2013),  163–188
  10. A system on a torus modelling the dynamics of a Josephson junction

    Uspekhi Mat. Nauk, 67:1(403) (2012),  181–182
  11. Rotation number quantization effect

    TMF, 162:2 (2010),  254–265
  12. Mathematical models of the dynamics of an overdamped Josephson junction

    Uspekhi Mat. Nauk, 63:3(381) (2008),  155–156
  13. On properties of the differential equation describing the dynamics of an overdamped Josephson junction

    Uspekhi Mat. Nauk, 59:2(356) (2004),  187–188
  14. On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$

    Uspekhi Mat. Nauk, 55:1(331) (2000),  195–196


© Steklov Math. Inst. of RAS, 2024