RUS  ENG
Full version
PEOPLE

Khromov Avgust Petrovich

Publications in Math-Net.Ru

  1. Divergent series and generalized mixed problem for wave equation

    Izv. Saratov Univ. Math. Mech. Inform., 24:3 (2024),  351–358
  2. Generalized mixed problem for the simplest wave equation and its applications

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 229 (2023),  83–89
  3. Divergent series and generalized mixed problem for a wave equation of the simplest type

    Izv. Saratov Univ. Math. Mech. Inform., 22:3 (2022),  322–331
  4. Divergent series and the mixed problem for the wave equation with free endpoints

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021),  65–72
  5. Divergent series in the Fourier method for the wave equation

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  215–238
  6. Mixed problem for a homogeneous wave equation with a nonzero initial velocity and a summable potential

    Izv. Saratov Univ. Math. Mech. Inform., 20:4 (2020),  444–456
  7. Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 172 (2019),  119–133
  8. On classic solution of the problem for a homogeneous wave equation with fixed end-points and zero initial velocity

    Izv. Saratov Univ. Math. Mech. Inform., 19:3 (2019),  280–288
  9. Classical and generalized solutions of a mixed problem for a nonhomogeneous wave equation

    Zh. Vychisl. Mat. Mat. Fiz., 59:2 (2019),  286–300
  10. A mixed problem for a wave equation with a nonzero initial velocity

    Izv. Saratov Univ. Math. Mech. Inform., 18:2 (2018),  157–171
  11. Mixed problem for a homogeneous wave equation with a nonzero initial velocity

    Zh. Vychisl. Mat. Mat. Fiz., 58:9 (2018),  1583–1596
  12. A mixed problem for an inhomogeneous wave equation with a summable potential

    Zh. Vychisl. Mat. Mat. Fiz., 57:10 (2017),  1692–1707
  13. Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation

    Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016),  403–413
  14. Justification of Fourier method in a mixed problem for wave equation with non-zero velocity

    Izv. Saratov Univ. Math. Mech. Inform., 16:1 (2016),  13–29
  15. On the convergence of the formal Fourier solution of the wave equation with a summable potential

    Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1795–1809
  16. Behavior of the formal solution to a mixed problem for the wave equation

    Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016),  239–251
  17. About the classical solution of the mixed problem for the wave equation

    Izv. Saratov Univ. Math. Mech. Inform., 15:1 (2015),  56–66
  18. A resolvent approach in the Fourier method for the wave equation: The non-selfadjoint case

    Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015),  1156–1167
  19. Resolvent approach to the Fourier method in a mixed problem for the wave equation

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  621–630
  20. The resolvent approach for the wave equation

    Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015),  229–241
  21. Riescz Basis Property of Eigen and Associated Functions of Integral Operators with Discontinuous Kernels, Containing Involution

    Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014),  558–569
  22. Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data

    Izv. Saratov Univ. Math. Mech. Inform., 14:2 (2014),  171–198
  23. Mixed problem for simplest hyperbolic first order equations with involution

    Izv. Saratov Univ. Math. Mech. Inform., 14:1 (2014),  10–20
  24. Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval

    Zh. Vychisl. Mat. Mat. Fiz., 54:9 (2014),  1442–1557
  25. Dirac system with undifferentiable potential and antiperiodic boundary conditions

    Izv. Saratov Univ. Math. Mech. Inform., 13:3 (2013),  28–35
  26. Integral Operators with Non-smooth Involution

    Izv. Saratov Univ. Math. Mech. Inform., 13:1(1) (2013),  40–45
  27. A family of operators with discontinuous ranges and approximation and restoration of continuous functions

    Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013),  1603–1609
  28. Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals

    Izv. RAN. Ser. Mat., 76:6 (2012),  107–122
  29. Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system with nondifferentiable potential

    Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012),  22–30
  30. Integral operator with kernel having jumps on broken lines

    Izv. Saratov Univ. Math. Mech. Inform., 12:2 (2012),  6–13
  31. On the convergence of the Lavrent'ev method for an integral equation of the first kind with involution

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  289–297
  32. Dirac system with non-differentiable potential and periodic boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012),  1621–1632
  33. On the regularization of a class of integral equations of the first kind whose kernels are discontinuous on the diagonals

    Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012),  1363–1372
  34. Substantiation of Fourier method in mixed problem with involution

    Izv. Saratov Univ. Math. Mech. Inform., 11:4 (2011),  3–12
  35. The Steinhaus Theorem on Equiconvergence for Functional-Differential Operators

    Mat. Zametki, 90:1 (2011),  22–33
  36. Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution

    Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011),  2233–2246
  37. The mixed problem for the differential equation with involution and potential of the special kind

    Izv. Saratov Univ. Math. Mech. Inform., 10:4 (2010),  17–22
  38. The Riesz bases consisting of eigen and associated functions for a functional differential operator with variable structure

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2,  39–52
  39. On the same theorem on a equiconvergence at the whole segment for the functional-differential operators

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(1) (2009),  3–10
  40. Operator integration with an involution having a power singularity

    Izv. Saratov Univ. Math. Mech. Inform., 8:4 (2008),  18–33
  41. On the equiconvergence of expansions for the certain class of the functional-differential operators with involution on the graph

    Izv. Saratov Univ. Math. Mech. Inform., 8:1 (2008),  9–14
  42. On the equiconvergence of expansions in eigen- and associated functions of an integral operator with involution

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  67–76
  43. An Equiconvergence Theorem for an Integral Operator with a Variable Upper Limit of Integration

    CMFD, 25 (2007),  182–191
  44. On Riesz basises of the eigen and associated functions of the functional-differential operator with a variable structure

    Izv. Saratov Univ. Math. Mech. Inform., 7:2 (2007),  20–25
  45. Equiconvergence theorem for expansions in eigenfunctions of integral operators with discontinuous involution

    Izv. Saratov Univ. Math. Mech. Inform., 7:2 (2007),  5–10
  46. On convergence of Riesz means of the expansions in eigenfunctions of a functional-differential operator on a cycle-graph

    Izv. Saratov Univ. Math. Mech. Inform., 7:1 (2007),  3–8
  47. Integral operators with kernels that are discontinuous on broken lines

    Mat. Sb., 197:11 (2006),  115–142
  48. On the absolute convergence of expansions in eigenfunctions of differential and integral operators

    Dokl. Akad. Nauk, 400:3 (2005),  304–308
  49. Absolute convergence of expansions in eigen- and adjoint functions of an integral operator with a variable limit of integration

    Izv. RAN. Ser. Mat., 69:4 (2005),  59–74
  50. Îď regularity of self-adjoint boundary conditions

    Izv. Saratov Univ. Math. Mech. Inform., 5:1-2 (2005),  48–61
  51. Finite-dimensional perturbations of Volterra operators

    CMFD, 10 (2004),  3–163
  52. Riesz Bases of Eigenfunctions of an Integral Operator with a Variable Limit of Integration

    Mat. Zametki, 76:1 (2004),  97–110
  53. Riesz summability of expansions in eigenfunctions of integral operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 2,  24–35
  54. Extension of the convergence domain in the Tikhonov method

    Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1109–1114
  55. Riesz Summability of Spectral Expansions for a Class of Integral Operators

    Differ. Uravn., 37:6 (2001),  809–814
  56. Riesz summability of spectral expansions for finite-dimensional perturbations of a class of integral operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 8,  38–50
  57. Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals

    Mat. Sb., 192:10 (2001),  33–50
  58. Equiconvergence of expansions in eigenfunctions of finite-dimensional perturbations of the integration operator

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 2,  21–26
  59. Inversion of integral operators with kernels discontinuous on the diagonal

    Mat. Zametki, 64:6 (1998),  932–942
  60. Spectral analysis of differential operators on a finite interval

    Differ. Uravn., 31:10 (1995),  1691–1696
  61. Resolvent asymptotics of Volterra integral operators

    Trudy Mat. Inst. Steklov., 211 (1995),  419–442
  62. First and second order differentiation operators with weight functions of variable sign

    Mat. Zametki, 56:1 (1994),  3–15
  63. Generating functions of Volterra integral operators

    Mat. Zametki, 33:3 (1983),  423–434
  64. Equiconvergence theorems for integrodifferential and integral operators

    Mat. Sb. (N.S.), 114(156):3 (1981),  378–405
  65. On generating functions of Volterra operators

    Mat. Sb. (N.S.), 102(144):3 (1977),  457–472
  66. Differential operator with irregular splitting boundary conditions

    Mat. Zametki, 19:5 (1976),  763–772
  67. Finite-dimensional perturbations of Volterra operators

    Mat. Zametki, 16:4 (1974),  669–680
  68. Finite-dimensional perturbations of Volterra operators

    Dokl. Akad. Nauk SSSR, 209:2 (1973),  309–311
  69. Asymptotic of the resolvent series of a Volterra operator and its application

    Mat. Zametki, 13:6 (1973),  857–868
  70. On a representation of the kernels of resolvents of Volterra operators and its applications

    Mat. Sb. (N.S.), 89(131):2(10) (1972),  207–226
  71. Representation of arbitrary functions by certain special series

    Mat. Sb. (N.S.), 83(125):2(10) (1970),  165–180
  72. Differentiation operator and series of Dirichlet type

    Mat. Zametki, 6:6 (1969),  759–766
  73. The generating elements of certain Volterra operators connected with third- and fourth-order differential operators

    Mat. Zametki, 3:6 (1968),  715–720
  74. Expansion in eigenfunctions of ordinary linear differential operators with irregular decomposing boundary conditions

    Mat. Sb. (N.S.), 70(112):3 (1966),  310–329
  75. Eigenfunction expansion of ordinary differential operators with non-regular decomposing boundary values

    Dokl. Akad. Nauk SSSR, 152:6 (1963),  1324–1326
  76. The eigenfunction expansion of ordinary linear differential operators in a finite interval

    Dokl. Akad. Nauk SSSR, 146:6 (1962),  1294–1297

  77. 19th International Saratov Winter School “Contemporary problems of function theory and their applications"

    Izv. Saratov Univ. Math. Mech. Inform., 18:3 (2018),  354–365
  78. 18th International Saratov Winter School “Contemporary Problems of Function Theory and Their Applications”

    Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016),  485–487
  79. XVII International Saratov Winter School «Contemporary Problems of the Function Theory and its Applications». Dedicated to the 150th Anniversary of V.  A. Steklov

    Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015),  357–359
  80. 16 Saratov winter school “Contemporary problems of function theory and its applications”

    Izv. Saratov Univ. Math. Mech. Inform., 12:2 (2012),  114–115
  81. 15 Saratov winter school “Contemporary problems of function theory and its applications” dedicated to the 125th anniversary of V. V. Golubev and 100th anniversary of SSU

    Izv. Saratov Univ. Math. Mech. Inform., 10:3 (2010),  86–87
  82. Vladimir Vasilievich Golubev

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(1) (2009),  88–89
  83. 14 Saratov winter school “Contemporary problems of function theory and its applications” dedicated to the memory of P. L. Ulyanov

    Izv. Saratov Univ. Math. Mech. Inform., 8:1 (2008),  76–77
  84. Petr Lavrentievich Ulianov

    Izv. Saratov Univ. Math. Mech. Inform., 7:1 (2007),  89–93
  85. Twelfth Saratov Winter Workshop “Contemporary Problems of Function Theory and their Applications”

    Uspekhi Mat. Nauk, 59:3(357) (2004),  189–190
  86. Tenth Saratov Winter School “Modern Problems of Theory of Functions and Applications”

    Uspekhi Mat. Nauk, 56:1(337) (2001),  205–206
  87. Yulii Vital'evich Pokornyi (on his 60th birthday)

    Uspekhi Mat. Nauk, 56:1(337) (2001),  199–200
  88. Ninth Saratov Winter School “Modern Problems of Theory of Functions and Applications”

    Uspekhi Mat. Nauk, 53:2(320) (1998),  185–186
  89. Eighth Saratov Winter School “Modern Problems of Theory of Functions and Applications”

    Uspekhi Mat. Nauk, 51:3(309) (1996),  221–222
  90. Nikolai Petrovich Kuptsov (obituary)

    Uspekhi Mat. Nauk, 50:4(304) (1995),  71–72
  91. Seventh Saratov Winter School on Theory of Functions and Approximations

    Uspekhi Mat. Nauk, 49:5(299) (1994),  187–188
  92. Andrei Andreevich Privalov (obituary)

    Uspekhi Mat. Nauk, 49:1(295) (1994),  199–200


© Steklov Math. Inst. of RAS, 2025