RUS  ENG
Full version
PEOPLE

Egorov Ivan Vladimirovich

Publications in Math-Net.Ru

  1. Численное моделирование взаимодействия волны Маха и пограничного слоя на плоской пластине

    TVT, 61:5 (2023),  752–759
  2. Numerical simulation of turbulent spots evolution in supersonic boundary layer over a plate

    Matem. Mod., 34:7 (2022),  63–72
  3. Simulation of the laminar–turbulent transition by applying hybrid difference schemes

    Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022),  677–693
  4. Simulation of the laminar–turbulent transition by applying dissipative numerical schemes

    Zh. Vychisl. Mat. Mat. Fiz., 61:2 (2021),  268–280
  5. Numerical simulation of the flow over a segment-conical body on the basis of Reynolds equations

    Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018),  123–135
  6. Effect of small bluntness on the formation of Görtler vortices in a supersonic flow around a compression corner

    Prikl. Mekh. Tekh. Fiz., 58:6 (2017),  23–40
  7. Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer

    Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1347–1373
  8. Circular cyllinder in a transonic flow at high Reynolds numbers: Thermal problem

    TVT, 54:4 (2016),  576–583
  9. The interaction of shock waves with a boundary layer on a sharp plate and a blunted plate

    TVT, 54:3 (2016),  379–392
  10. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016),  1064–1081
  11. The effect of spatial perturbations of a supersonic flow on heat flow to the surface of blunt bodies

    TVT, 53:5 (2015),  713–726
  12. Numerical investigation of the flow field and heat transfer in the circuit of a high-temperature wind-tunnel facility

    TVT, 46:5 (2008),  771–783
  13. Numerical simulation of stabilization of the boundary layer on a surface with a porous coating in a supersonic separated flow

    Prikl. Mekh. Tekh. Fiz., 48:2 (2007),  39–47
  14. Aerodynamic Heating of a Thin Sharp-Nose Circular Cone in Supersonic Flow

    TVT, 43:5 (2005),  732–744
  15. Evolution of the flow field around a circular cylinder and a sphere upon instantaneous start with a supersonic velocity

    Prikl. Mekh. Tekh. Fiz., 45:3 (2004),  44–49
  16. Three-dimensional laminar streamlining of axially symmetric bodies by supersonic gas flow

    Zh. Vychisl. Mat. Mat. Fiz., 42:12 (2002),  1864–1874
  17. Effect of the temperature drop between the isothermic walls of a channel on the structure of supersonic flow and on the aerodynamic properties

    TVT, 39:4 (2001),  581–588
  18. Supersonic flow of viscous gas in a flat channel at high values of the Reynolds number

    TVT, 39:1 (2001),  115–122
  19. Development of a flow field structure in the vicinity of a circular cylinder in the presence of a laminar-turbulent transition

    TVT, 38:5 (2000),  759–768
  20. Hypersonic flow in an MHD-acceleration facility and under full-scale conditions

    Prikl. Mekh. Tekh. Fiz., 39:2 (1998),  91–102
  21. Application of Newton's method in simulation of unsteady separated flows

    Zh. Vychisl. Mat. Mat. Fiz., 38:3 (1998),  504–509
  22. Simulation of the flow with nonequilibrium chemical reactions in a channel of various crossection

    Matem. Mod., 9:11 (1997),  85–100
  23. Application of the Newton method to the calculation of internal supersonic separated flows

    Prikl. Mekh. Tekh. Fiz., 38:1 (1997),  30–42
  24. Simulation of confined separated flows in chemical nonequilibrium

    Zh. Vychisl. Mat. Mat. Fiz., 37:6 (1997),  751–758
  25. The use of fully implicit monotone schemes to model plane internal flows

    Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996),  91–107
  26. Numerical solution of the Navier-Stokes equations using variational iteration methods

    Zh. Vychisl. Mat. Mat. Fiz., 34:11 (1994),  1693–1703
  27. An approach to the numerical solution of the bidimensional Navier–Stokes equations using the direct calculation method

    Zh. Vychisl. Mat. Mat. Fiz., 31:2 (1991),  286–299


© Steklov Math. Inst. of RAS, 2024