|
|
|
|
2024 |
1. |
Dmitri Bykov, Andrew Kuzovchikov, “The classical and quantum particle on a flag manifold”, Class. Quantum Grav., 41:20 (2024), 205009 , 40 pp., arXiv: 2404.15900 ; |
|
2023 |
2. |
Dmitri Bykov, “Quantum flag manifold $\sigma$-models and Hermitian Ricci flow”, Comm. Math. Phys., 401 (2023), 1–32 , arXiv: 2006.1412 ; |
3. |
D. V. Bykov, “Sigma models as Gross–Neveu models. II”, Theoret. and Math. Phys., 217:3 (2023), 1842–1854 |
4. |
Dmitri Bykov, Andrei Smilga, “Monopole harmonics on $\mathbb{C}\mathbb{P}^{n-1}$”, SciPost Phys., 15 (2023), 195 , 33 pp. ; |
5. |
Dmitri Bykov, “$\beta$-function of the level-zero Gross–Neveu model”, SciPost Phys., 15:4 (2023), 127 , 27 pp. ; |
|
2022 |
6. |
Ian Affleck, Dmitri Bykov, Kyle Wamer, “Flag manifold sigma models: Spin chains and integrable theories”, Phys. Rep., 953 (2022), 1–93 ; |
7. |
I. Ya. Aref'eva, V. V. Belokurov, E. E. Boos, D. V. Bykov, I. V. Volovich, D. I. Kazakov, V. V. Kozlov, M. V. Libanov, V. A. Matveev, V. A. Rubakov, D. V. Treshchev, G. V. Trubnikov, “In memory of Andrei Alekseevich Slavnov”, Phys. Usp., 65:11 (2022), 1204–1205 |
8. |
D. Bykov, Beta function of the level-zero Gross-Neveu model, 2022 , 36 pp., arXiv: 2209.10502 |
9. |
Dmitri Bykov, “The $\mathsf{CP}^{n-1}$-model with fermions: a new look”, Adv. Theor. Math. Phys., 26:2 (2022), 295–324 , arXiv: 2009.04608 ; |
|
2021 |
10. |
D. V. Bykov, “Sigma models as Gross–Neveu models”, Theoret. and Math. Phys., 208:2 (2021), 993–1003 |
11. |
Dmitri Bykov, Dieter Lüst, “Deformed $\sigma$-models, Ricci flow and Toda field theorie”, Lett. Math. Phys., 111 (2021), 150 , 36 pp. ; |
|
2020 |
12. |
Dmitri V. Bykov, “Flag Manifold Sigma Models and Nilpotent Orbits”, Proc. Steklov Inst. Math., 309 (2020), 78–86 |
13. |
Ismail Achmed-Zade, Dmitri Bykov, “Ricci-flat metrics on vector bundles over flag manifolds”, Comm. Math. Phys., 376:3 (2020), 2309–2328 , arXiv: 1905.00412 ; |
14. |
Dmitri Bykov, Paul Zinn-Justin, “Higher spin $\mathfrak{sl}_2 R$-matrix from equivariant (co)homology”, Lett. Math. Phys., 110 (2020), 2435–2470 , arXiv: 1904.11107 ; |
15. |
D. Bykov, D. Lüst, Deformed sigma-models, Ricci flow and Toda field theories, 2020 , arXiv: 2005.01812 |
16. |
D. Bykov, The $CP^{n-1}$-model with fermions: a new look, 2020 , arXiv: 2009.04608 |
|
2019 |
17. |
Dmitri Bykov, “Flag manifold $\sigma$-models: The $\frac1{N}$-expansion and the anomaly two-form”, Nuclear Phys. B, 941 (2019), 316–360 , arXiv: 1901.02861 |
18. |
D. Bykov, Flag manifold sigma-models and nilpotent orbits, 2019 , 12 pp., arXiv: 1911.07768 |
|
2018 |
19. |
Phys. Part. Nucl., 49:5 (2018), 963–965 |
20. |
D. V. Bykov, “The $1/N$-expansion for flag-manifold $\sigma$-models”, Theoret. and Math. Phys., 197:3 (2018), 1691–1700 |
21. |
Dmitri Bykov, “Ricci-flat metrics and Killing–Yano tensors”, QUARKS-2018, EPJ Web of Conf., 191, 2018, 06010 , 8 pp. |
|
2017 |
22. |
Dmitri Bykov, “Complex structure-induced deformations of $\sigma$-models”, JHEP, 2017, no. 3, 130 , 26 pp., arXiv: 1611.07116 |
23. |
D. V. Bykov, “A gauged linear formulation for flag-manifold $\sigma$-models”, Theoret. and Math. Phys., 193:3 (2017), 1737–1753 |
|
2016 |
24. |
Dmitri Bykov, “Classical solutions of a flag manifold $\sigma$-model”, Nuclear Phys. B, 902 (2016), 292–301 |
25. |
Dmitri Bykov, “Complex structures and zero-curvature equations for $\sigma$-models”, Phys. Lett. B, 760 (2016), 341–344 |
26. |
D. V. Bykov, “Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models”, Theoret. and Math. Phys., 189:3 (2016), 1734–1741 |
27. |
Dmitri Bykov, “Sigma-models with complex homogeneous target spaces”, 19th International Seminar on High Energy Physics (QUARKS-2016), Sankt-Peterburg, 29 maya–4 iyunya 2016 g., EPJ Web of Conf., 125, 2016, 5002 , 7 pp. |
|
2015 |
28. |
D. Bykov, “Integrable properties of $\sigma$-models with non-symmetric target spaces”, Nuclear Phys. B, 894 (2015), 254–267 , arXiv: 1412.3746 |
29. |
D. V. Bykov, “The differential geometry of blow-ups”, Theoret. and Math. Phys., 185:2 (2015), 1636–1648 |
|
2014 |
30. |
D. Bykov, Comments on the del Pezzo cone, 2014 , 28 pp., arXiv: 1405.2319 |
31. |
D. Bykov, “Instantons and holomorphic spheres”, Supersymmetries and Quantum Symmetries (Dubna, 29.07–03.08 2015 g.), Phys. Part. Nucl. Lett., 11, no. 7, 2014, 1016–1018 |
32. |
D. V. Bykov, “Geometric aspects of the holographic duality”, Theoret. and Math. Phys., 181:3 (2014), 1499–1508 |
|
2013 |
33. |
D. Bykov, “The geometry of antiferromagnetic spin chains”, Comm. Math. Phys., 322:3 (2013), 807–834 , arXiv: 1206.2777 |
34. |
D. Bykov, “Comments on blow-ups”, New Trends in High Energy Physics (23–29 sentyabrya 2013 g., Alushta, Ukraina), eds. Laszlo Jenkovszky, Denis Savchenko, Georgiy Stelmakh, Institut teoreticheskoi fiziki im. N. N. Bogolyubova, Kiev, 2013, 166-171 |
35. |
D. Bykov, The Kahler metric of a blow-up, 2013 , 38 pp., arXiv: 1307.2816 |
36. |
D. Bykov, “The geometry of Haldane limits”, Proceedings of the 17th International Seminar QUARKS'2012 (4–10 iyunya 2012 g.), v. 1, eds. V. A. Matveev, V. A. Rubakov, Institute for Nuclear research of the Russian Academy of Sciences, 2013, 180–192 |
|
2012 |
37. |
D. Bykov, “Haldane limits via Lagrangian embeddings”, Nuclear Phys. B, 855:1 (2012), 100–127 , arXiv: 1104.1419 |
38. |
D. Bykov, K. Zarembo, “Ladders for Wilson loops beyond leading order”, J. High Energy Phys., 2012, no. 9, 057 , 14 pp., arXiv: 1206.7117 |
|
2011 |
39. |
D. V. Bykov, “Massless Excitations of Long Strings in $\mathrm{AdS}_4\times\mathbb C\mathrm P^3$”, Proc. Steklov Inst. Math., 272 (2011), 47–57 |
|
2010 |
40. |
D. V. Bykov, “Symmetry algebra of the AdS$_4{\times}\mathbb{CP}^3$ superstring”, Theoret. and Math. Phys., 163:1 (2010), 496–510 |
41. |
D. Bykov, “The worldsheet low-energy limit of the $\mathrm{AdS}_4\times\mathbb{C}\mathrm{P}^3$ superstring”, Nuclear Phys. B, 838:1-2 (2010), 47–74 |
|
2009 |
42. |
L. F. Alday, G. Arutyunov, D. Bykov, “Spinning strings in $\mathrm{AdS}_4\times\mathbb{CP}^3$ and quantum corrections”, Fortschr. Phys., 57:5-7 (2009), 472–477 |
|
2008 |
43. |
D. V. Bykov, A. A. Slavnov, “Matrix and vector models in the strong coupling limit”, Theoret. and Math. Phys., 155:2 (2008), 708–714 |
44. |
L. F. Alday, G. Arutyunov, D. Bykov, “Semiclassical quantization of spinning strings in $\mathrm{AdS}_4\times\mathbb{CP}^3$”, J. High Energy Phys., 2008, no. 11, 089 , 21 pp. |
45. |
D. Bykov, S. Frolov, “Giant magnons in $TsT$-transformed $\mathrm{AdS}_5\times S^5$”, J. High Energy Phys., 2008, no. 7, 071 , 18 pp. |
46. |
Yu. S. Osipov, V. A. Sadovnichii, D. V. Bykov, F. L. Chernous'ko, A. A. Logunov, S. Yu. Dobrokhotov, M. V. Karasev, “Fiftieth anniversary of research and teaching by Viktor Pavlovich Maslov”, Theoret. and Math. Phys., 155:2 (2008), 674–677 |
|