|
|
Publications in Math-Net.Ru
-
Functional properties of limits of Sobolev homeomorphisms with integrable distortion
CMFD, 70:2 (2024), 215–236
-
Lower semicontinuity of distortion coefficients for homeomorphisms of bounded $(1, \sigma)$-weighted $(q,p)$-distortion on Carnot groups
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3, 84–90
-
Composition operators in Sobolev spaces on Riemannian manifolds
Sibirsk. Mat. Zh., 65:6 (2024), 1128–1152
-
The geometric function properties of the limits of ACL-mappings with integrable distortion
Sibirsk. Mat. Zh., 65:5 (2024), 820–840
-
Semicontinuity under convergence of homeomorphisms in $L_{1, \mathrm{loc}}$ of the operator distortion function
Sibirsk. Mat. Zh., 65:4 (2024), 605–621
-
Boundary values in the geometric function theory in domains with moving boundaries
Sibirsk. Mat. Zh., 65:3 (2024), 489–516
-
The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms
Izv. RAN. Ser. Mat., 87:4 (2023), 47–90
-
Openness and discreteness of mappings of finite distortion on Carnot groups
Sibirsk. Mat. Zh., 64:6 (2023), 1151–1159
-
Continuity of the mappings with finite distortion of the Sobolev class $W^1_{\nu,\operatorname{loc}}$ on Carnot groups
Sibirsk. Mat. Zh., 64:5 (2023), 912–934
-
Hölder continuity of the traces of Sobolev functions to hypersurfaces in Carnot groups and the $\mathcal{P}$-differentiability of Sobolev mappings
Sibirsk. Mat. Zh., 64:4 (2023), 700–719
-
On the Gehring type condition and properties of mappings
Vladikavkaz. Mat. Zh., 25:3 (2023), 51–58
-
Coincidence of set functions in quasiconformal analysis
Mat. Sb., 213:9 (2022), 3–33
-
Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups
Sibirsk. Mat. Zh., 63:2 (2022), 283–315
-
On Poletsky-type modulus inequalities for some classes of mappings
Vladikavkaz. Mat. Zh., 24:4 (2022), 58–69
-
Functional and analytic properties of a class of mappings in quasi-conformal analysis
Izv. RAN. Ser. Mat., 85:5 (2021), 58–109
-
On the equivalence of two approaches to problems of quasiconformal analysis
Sibirsk. Mat. Zh., 62:6 (2021), 1252–1270
-
A pointwise condition for the absolute continuity of a function of one variable and its applications
Vladikavkaz. Mat. Zh., 23:4 (2021), 41–49
-
Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms
Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 21–25
-
On the Analytic and Geometric Properties of Mappings in the Theory of $\mathscr Q_{q,p}$-Homeomorphisms
Mat. Zametki, 108:6 (2020), 925–929
-
Sobolev $W^1_p$-spaces on $d$-thick closed subsets of $\mathbb R^n$
Mat. Sb., 211:6 (2020), 40–94
-
The regularity of inverses to Sobolev mappings and the theory of $\mathscr Q_{q,p}$-homeomorphisms
Sibirsk. Mat. Zh., 61:6 (2020), 1257–1299
-
Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds
Mat. Sb., 210:1 (2019), 63–112
-
Isomorphisms of Sobolev spaces on Riemannian manifolds and quasiconformal mappings
Sibirsk. Mat. Zh., 60:5 (2019), 996–1034
-
On the convergence of mappings with $k$-finite distortion
Probl. Anal. Issues Anal., 7(25):special issue (2018), 88–100
-
Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function
Sibirsk. Mat. Zh., 59:6 (2018), 1240–1267
-
Basics of the quasiconformal analysis of a two-index scale of spatial mappings
Sibirsk. Mat. Zh., 59:5 (2018), 1020–1056
-
On the Whitney Problem for Weighted Sobolev Spaces
Dokl. Akad. Nauk, 472:6 (2017), 634–638
-
On the Convergence of Mappings with $k$-Finite Distortion
Mat. Zametki, 102:6 (2017), 943–948
-
Lower semicontinuity of mappings with bounded $(\theta,1)$-weighted $(p,q)$-distortion
Sibirsk. Mat. Zh., 57:5 (2016), 999–1011
-
Isomorphisms of Sobolev spaces on Carnot groups and quasiconformal mappings
Sibirsk. Mat. Zh., 56:5 (2015), 989–1029
-
Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded $(p,q)$-distortion
Sibirsk. Mat. Zh., 56:2 (2015), 290–321
-
Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings
Sibirsk. Mat. Zh., 55:5 (2014), 1001–1039
-
Approximate differentiability of mappings of Carnot–Carathéodory spaces
Eurasian Math. J., 4:2 (2013), 10–48
-
Regularity of mappings inverse to Sobolev mappings
Mat. Sb., 203:10 (2012), 3–32
-
Coercive estimates and integral representation formulas on Carnot groups
Eurasian Math. J., 1:3 (2010), 58–96
-
Spaces of differential forms and maps with controlled distortion
Izv. RAN. Ser. Mat., 74:4 (2010), 5–32
-
Spaces of differential forms and mappings with controlled distortion
Dokl. Akad. Nauk, 424:6 (2009), 727–731
-
Nonlinear potential theory for Sobolev spaces on Carnot groups
Sibirsk. Mat. Zh., 50:5 (2009), 1016–1036
-
Sobolev classes of mappings on a Carnot–Carathéodory space: Various norms and variational problems
Sibirsk. Mat. Zh., 49:5 (2008), 1028–1045
-
The Traces of Bessel Potentials on Regular Subsets of Carnot Groups
Mat. Tr., 10:2 (2007), 19–61
-
Traces of Sobolev functions on the Ahlfors sets of Carnot groups
Sibirsk. Mat. Zh., 48:6 (2007), 1201–1221
-
Differentiability of mappings in the geometry of Carnot manifolds
Sibirsk. Mat. Zh., 48:2 (2007), 251–271
-
Differentiability of the mappings of Carnot–Caratheodory spaces in the Sobolev and $BV$-topologies
Sibirsk. Mat. Zh., 48:1 (2007), 46–67
-
Boundary Values of Differentiable Functions Defined on an Arbitrary Domain of a Carnot Group
Mat. Tr., 9:2 (2006), 23–46
-
Whitney-type theorems on extension of functions on Carnot groups
Sibirsk. Mat. Zh., 47:4 (2006), 731–752
-
Foundations of the theory of mappings with bounded distortion on Carnot groups
Dokl. Akad. Nauk, 405:1 (2005), 7–12
-
Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. II
Mat. Tr., 7:1 (2004), 13–49
-
Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. I
Mat. Tr., 6:2 (2003), 14–65
-
Differentiability of maps of Carnot groups of Sobolev classes
Mat. Sb., 194:6 (2003), 67–86
-
The geometry of Carnot-Carathéodory spaces, quasiconformal analysis, and geometric measure theory
Vladikavkaz. Mat. Zh., 5:1 (2003), 14–34
-
Superposition operators in Sobolev spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 10, 11–33
-
Closure of Classes of Mappings with Bounded Distortion on Carnot Groups
Mat. Tr., 5:2 (2002), 92–137
-
Superposition operators in Lebesgue spaces and the differentiability of quasi-additive set functions
Vladikavkaz. Mat. Zh., 4:1 (2002), 11–33
-
Topological and geometrical properties of mappings with summable Jacobian in Sobolev classes. I
Sibirsk. Mat. Zh., 41:1 (2000), 23–48
-
Mappings with bounded distortion and with finite distortion on Carnot groups
Sibirsk. Mat. Zh., 40:4 (1999), 764–804
-
Classification of sub-Riemannian manifolds
Sibirsk. Mat. Zh., 39:6 (1998), 1271–1289
-
Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups
Sibirsk. Mat. Zh., 39:4 (1998), 776–795
-
Continuation of differentiable functions, and quasiconformal
mappings on Carnot groups
Dokl. Akad. Nauk, 348:1 (1996), 15–18
-
Quasiconformal mappings on Carnot groups and their applications
Dokl. Akad. Nauk, 347:4 (1996), 439–442
-
Fundamentals of the nonlinear potential theory for subelliptic equations
Trudy Inst. Mat. SO RAN, 31 (1996), 100–160
-
Monotone functions and quasiconformal mappings on Carnot groups
Sibirsk. Mat. Zh., 37:6 (1996), 1269–1295
-
Normal families of mappings on Carnot groups
Sibirsk. Mat. Zh., 37:2 (1996), 273–286
-
Approximately differentiable transformations and change of variables on nilpotent groups
Sibirsk. Mat. Zh., 37:1 (1996), 70–89
-
Weakly contact transformations and change of variables on
nilpotent groups
Dokl. Akad. Nauk, 341:4 (1995), 439–441
-
Sobolev spaces and hypoelliptic equations
Trudy Inst. Mat. SO RAN, 29 (1995), 7–62
-
Analytic properties of quasiconformal mappings on Carnot groups
Sibirsk. Mat. Zh., 36:6 (1995), 1317–1327
-
On extension of functions of bounded mean oscillation from domains in a space of homogeneous type with intrinsic metric
Sibirsk. Mat. Zh., 36:5 (1995), 1015–1048
-
Exceptional sets for solutions to subelliptic equations
Sibirsk. Mat. Zh., 36:4 (1995), 805–818
-
Weighted Sobolev spaces and boundary behavior of solutions to degenerate hypoelliptic equations
Sibirsk. Mat. Zh., 36:2 (1995), 278–300
-
Thin sets in weighted potential theory and degenerate elliptic equations
Sibirsk. Mat. Zh., 36:1 (1995), 28–36
-
Removable singularities of bounded solutions of quasi-elliptic equations
Sibirsk. Mat. Zh., 33:4 (1992), 3–14
-
Weighted $L_p$ potential theory on homogeneous groups
Sibirsk. Mat. Zh., 33:2 (1992), 29–48
-
Intrinsic metrics and boundary values of functions of Zygmund classes
Sibirsk. Mat. Zh., 32:2 (1991), 3–12
-
Weighted $L_p$ potential theory on homogeneous groups
Dokl. Akad. Nauk SSSR, 314:1 (1990), 37–41
-
The $L_p$ potential theory for generalized kernels
Mat. Zametki, 47:5 (1990), 146–148
-
$L_p$-theory of potential and quasiconformal mappings on homogeneous groups
Trudy Inst. Mat. Sib. Otd. AN SSSR, 14 (1989), 45–89
-
Potential theory on homogeneous groups
Mat. Sb., 180:1 (1989), 57–77
-
Mappings of homogeneous groups and imbeddings of functional spaces
Sibirsk. Mat. Zh., 30:5 (1989), 25–41
-
Intrinsic geometries and boundary values of differentiable functions. I
Sibirsk. Mat. Zh., 30:2 (1989), 29–42
-
Potential theory on homogeneous groups
Dokl. Akad. Nauk SSSR, 303:1 (1988), 11–15
-
Equivalent normings of spaces of differentiable functions in
domains and their applications
Dokl. Akad. Nauk SSSR, 300:4 (1988), 777–781
-
Quasielliptic $L_p$-theory of potential and its applications
Dokl. Akad. Nauk SSSR, 298:4 (1988), 780–784
-
The maximum principle in potential theory and embedding theorems for anisotropic spaces of differentiable functions
Sibirsk. Mat. Zh., 29:2 (1988), 17–33
-
Geometric properties of domains and estimates for the norm of an
extension operator
Dokl. Akad. Nauk SSSR, 292:4 (1987), 791–795
-
Isoperimetric relations and conditions for the extension of
differentiable functions
Dokl. Akad. Nauk SSSR, 292:1 (1987), 11–15
-
Geometric properties of domains and mappings. Lower bounds on the norm of the extension operator
Trudy Inst. Mat. Sib. Otd. AN SSSR, 7 (1987), 70–101
-
On geometric properties of functions with generalized first derivatives
Uspekhi Mat. Nauk, 34:1(205) (1979), 17–65
-
A criterion for the extension of functions of the class $L_2^1$ from unbounded plane domains
Sibirsk. Mat. Zh., 20:2 (1979), 416–419
-
Metric completion of a domain by using a conformal capacity invariant under quasi-conformal mappings
Dokl. Akad. Nauk SSSR, 238:5 (1978), 1040–1042
-
A test of the removability of sets for $L_p^1$ spaces of quasiconformal and quasi-isomorphic mappings
Sibirsk. Mat. Zh., 18:1 (1977), 48–68
-
Functional characterizations of quasi-isometric mappings
Sibirsk. Mat. Zh., 17:4 (1976), 768–773
-
Quasiconformal mappings, and spaces of functions with first generalized derivatives
Sibirsk. Mat. Zh., 17:3 (1976), 515–531
-
A criterion for the possibility of eliminating sets for the spaces $W_p^1$ of quasiconformal and quasi-isometric mappings
Dokl. Akad. Nauk SSSR, 220:4 (1975), 769–771
-
The boundary correspondence for quasiconformal mappings of $n$-dimensional domains
Sibirsk. Mat. Zh., 16:3 (1975), 630–633
-
Lattice isomorphisms of the spaces $W_n^1$ and quasiconformal mappings
Sibirsk. Mat. Zh., 16:2 (1975), 224–246
-
Lattice isomorphisms of the spaces $W_n^1$, and quasiconformal mappings
Dokl. Akad. Nauk SSSR, 215:1 (1974), 24–26
-
Estimates of the deviation of quasi-umbilical surfaces from a sphere
Sibirsk. Mat. Zh., 11:5 (1970), 971–987
-
Stefan Grigorievich Samko (on the occasion of his 80th birthday)
Vladikavkaz. Mat. Zh., 23:3 (2021), 126–129
-
To the 65-th anniversary of prof. A. G. Kusraev
Vladikavkaz. Mat. Zh., 20:2 (2018), 111–119
-
Vladimir Mikhailovich Miklyukov (obituary)
Uspekhi Mat. Nauk, 69:3(417) (2014), 173–176
-
Mikhail Abramovich Taitslin (1936–2013)
Sib. Èlektron. Mat. Izv., 10 (2013), 54–65
-
Anatoly Georgievich Kusraev is 60
Sib. Èlektron. Mat. Izv., 10 (2013), 13–29
-
Anatolii Georgievich Kusraev (on the occasion of his 60th anniversary)
Vladikavkaz. Mat. Zh., 15:1 (2013), 90–97
-
Yurii Grigor'evich Reshetnyak (on his 80th birthday)
Uspekhi Mat. Nauk, 64:5(389) (2009), 185–188
-
Yurii Grigor'evich Reshetnyak (on the occasion of his 80th birthday)
Sibirsk. Mat. Zh., 50:5 (2009), 959–962
-
Yuri Fedorovich Borisov (1925–2007)
Sib. Èlektron. Mat. Izv., 4 (2007), 28–30
© , 2025