RUS  ENG
Full version
PEOPLE

Vodopyanov Sergei Konstantinovich

Publications in Math-Net.Ru

  1. Functional properties of limits of Sobolev homeomorphisms with integrable distortion

    CMFD, 70:2 (2024),  215–236
  2. Lower semicontinuity of distortion coefficients for homeomorphisms of bounded $(1, \sigma)$-weighted $(q,p)$-distortion on Carnot groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3,  84–90
  3. Composition operators in Sobolev spaces on Riemannian manifolds

    Sibirsk. Mat. Zh., 65:6 (2024),  1128–1152
  4. The geometric function properties of the limits of ACL-mappings with integrable distortion

    Sibirsk. Mat. Zh., 65:5 (2024),  820–840
  5. Semicontinuity under convergence of homeomorphisms in $L_{1, \mathrm{loc}}$ of the operator distortion function

    Sibirsk. Mat. Zh., 65:4 (2024),  605–621
  6. Boundary values in the geometric function theory in domains with moving boundaries

    Sibirsk. Mat. Zh., 65:3 (2024),  489–516
  7. The boundary behavior of $\mathcal Q_{p,q}$-homeomorphisms

    Izv. RAN. Ser. Mat., 87:4 (2023),  47–90
  8. Openness and discreteness of mappings of finite distortion on Carnot groups

    Sibirsk. Mat. Zh., 64:6 (2023),  1151–1159
  9. Continuity of the mappings with finite distortion of the Sobolev class $W^1_{\nu,\operatorname{loc}}$ on Carnot groups

    Sibirsk. Mat. Zh., 64:5 (2023),  912–934
  10. Hölder continuity of the traces of Sobolev functions to hypersurfaces in Carnot groups and the $\mathcal{P}$-differentiability of Sobolev mappings

    Sibirsk. Mat. Zh., 64:4 (2023),  700–719
  11. On the Gehring type condition and properties of mappings

    Vladikavkaz. Mat. Zh., 25:3 (2023),  51–58
  12. Coincidence of set functions in quasiconformal analysis

    Mat. Sb., 213:9 (2022),  3–33
  13. Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups

    Sibirsk. Mat. Zh., 63:2 (2022),  283–315
  14. On Poletsky-type modulus inequalities for some classes of mappings

    Vladikavkaz. Mat. Zh., 24:4 (2022),  58–69
  15. Functional and analytic properties of a class of mappings in quasi-conformal analysis

    Izv. RAN. Ser. Mat., 85:5 (2021),  58–109
  16. On the equivalence of two approaches to problems of quasiconformal analysis

    Sibirsk. Mat. Zh., 62:6 (2021),  1252–1270
  17. A pointwise condition for the absolute continuity of a function of one variable and its applications

    Vladikavkaz. Mat. Zh., 23:4 (2021),  41–49
  18. Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms

    Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020),  21–25
  19. On the Analytic and Geometric Properties of Mappings in the Theory of $\mathscr Q_{q,p}$-Homeomorphisms

    Mat. Zametki, 108:6 (2020),  925–929
  20. Sobolev $W^1_p$-spaces on $d$-thick closed subsets of $\mathbb R^n$

    Mat. Sb., 211:6 (2020),  40–94
  21. The regularity of inverses to Sobolev mappings and the theory of $\mathscr Q_{q,p}$-homeomorphisms

    Sibirsk. Mat. Zh., 61:6 (2020),  1257–1299
  22. Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds

    Mat. Sb., 210:1 (2019),  63–112
  23. Isomorphisms of Sobolev spaces on Riemannian manifolds and quasiconformal mappings

    Sibirsk. Mat. Zh., 60:5 (2019),  996–1034
  24. On the convergence of mappings with $k$-finite distortion

    Probl. Anal. Issues Anal., 7(25):special issue (2018),  88–100
  25. Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function

    Sibirsk. Mat. Zh., 59:6 (2018),  1240–1267
  26. Basics of the quasiconformal analysis of a two-index scale of spatial mappings

    Sibirsk. Mat. Zh., 59:5 (2018),  1020–1056
  27. On the Whitney Problem for Weighted Sobolev Spaces

    Dokl. Akad. Nauk, 472:6 (2017),  634–638
  28. On the Convergence of Mappings with $k$-Finite Distortion

    Mat. Zametki, 102:6 (2017),  943–948
  29. Lower semicontinuity of mappings with bounded $(\theta,1)$-weighted $(p,q)$-distortion

    Sibirsk. Mat. Zh., 57:5 (2016),  999–1011
  30. Isomorphisms of Sobolev spaces on Carnot groups and quasiconformal mappings

    Sibirsk. Mat. Zh., 56:5 (2015),  989–1029
  31. Capacity estimates, Liouville's theorem, and singularity removal for mappings with bounded $(p,q)$-distortion

    Sibirsk. Mat. Zh., 56:2 (2015),  290–321
  32. Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings

    Sibirsk. Mat. Zh., 55:5 (2014),  1001–1039
  33. Approximate differentiability of mappings of Carnot–Carathéodory spaces

    Eurasian Math. J., 4:2 (2013),  10–48
  34. Regularity of mappings inverse to Sobolev mappings

    Mat. Sb., 203:10 (2012),  3–32
  35. Coercive estimates and integral representation formulas on Carnot groups

    Eurasian Math. J., 1:3 (2010),  58–96
  36. Spaces of differential forms and maps with controlled distortion

    Izv. RAN. Ser. Mat., 74:4 (2010),  5–32
  37. Spaces of differential forms and mappings with controlled distortion

    Dokl. Akad. Nauk, 424:6 (2009),  727–731
  38. Nonlinear potential theory for Sobolev spaces on Carnot groups

    Sibirsk. Mat. Zh., 50:5 (2009),  1016–1036
  39. Sobolev classes of mappings on a Carnot–Carathéodory space: Various norms and variational problems

    Sibirsk. Mat. Zh., 49:5 (2008),  1028–1045
  40. The Traces of Bessel Potentials on Regular Subsets of Carnot Groups

    Mat. Tr., 10:2 (2007),  19–61
  41. Traces of Sobolev functions on the Ahlfors sets of Carnot groups

    Sibirsk. Mat. Zh., 48:6 (2007),  1201–1221
  42. Differentiability of mappings in the geometry of Carnot manifolds

    Sibirsk. Mat. Zh., 48:2 (2007),  251–271
  43. Differentiability of the mappings of Carnot–Caratheodory spaces in the Sobolev and $BV$-topologies

    Sibirsk. Mat. Zh., 48:1 (2007),  46–67
  44. Boundary Values of Differentiable Functions Defined on an Arbitrary Domain of a Carnot Group

    Mat. Tr., 9:2 (2006),  23–46
  45. Whitney-type theorems on extension of functions on Carnot groups

    Sibirsk. Mat. Zh., 47:4 (2006),  731–752
  46. Foundations of the theory of mappings with bounded distortion on Carnot groups

    Dokl. Akad. Nauk, 405:1 (2005),  7–12
  47. Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. II

    Mat. Tr., 7:1 (2004),  13–49
  48. Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. I

    Mat. Tr., 6:2 (2003),  14–65
  49. Differentiability of maps of Carnot groups of Sobolev classes

    Mat. Sb., 194:6 (2003),  67–86
  50. The geometry of Carnot-Carathéodory spaces, quasiconformal analysis, and geometric measure theory

    Vladikavkaz. Mat. Zh., 5:1 (2003),  14–34
  51. Superposition operators in Sobolev spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 10,  11–33
  52. Closure of Classes of Mappings with Bounded Distortion on Carnot Groups

    Mat. Tr., 5:2 (2002),  92–137
  53. Superposition operators in Lebesgue spaces and the differentiability of quasi-additive set functions

    Vladikavkaz. Mat. Zh., 4:1 (2002),  11–33
  54. Topological and geometrical properties of mappings with summable Jacobian in Sobolev classes. I

    Sibirsk. Mat. Zh., 41:1 (2000),  23–48
  55. Mappings with bounded distortion and with finite distortion on Carnot groups

    Sibirsk. Mat. Zh., 40:4 (1999),  764–804
  56. Classification of sub-Riemannian manifolds

    Sibirsk. Mat. Zh., 39:6 (1998),  1271–1289
  57. Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups

    Sibirsk. Mat. Zh., 39:4 (1998),  776–795
  58. Continuation of differentiable functions, and quasiconformal mappings on Carnot groups

    Dokl. Akad. Nauk, 348:1 (1996),  15–18
  59. Quasiconformal mappings on Carnot groups and their applications

    Dokl. Akad. Nauk, 347:4 (1996),  439–442
  60. Fundamentals of the nonlinear potential theory for subelliptic equations

    Trudy Inst. Mat. SO RAN, 31 (1996),  100–160
  61. Monotone functions and quasiconformal mappings on Carnot groups

    Sibirsk. Mat. Zh., 37:6 (1996),  1269–1295
  62. Normal families of mappings on Carnot groups

    Sibirsk. Mat. Zh., 37:2 (1996),  273–286
  63. Approximately differentiable transformations and change of variables on nilpotent groups

    Sibirsk. Mat. Zh., 37:1 (1996),  70–89
  64. Weakly contact transformations and change of variables on nilpotent groups

    Dokl. Akad. Nauk, 341:4 (1995),  439–441
  65. Sobolev spaces and hypoelliptic equations

    Trudy Inst. Mat. SO RAN, 29 (1995),  7–62
  66. Analytic properties of quasiconformal mappings on Carnot groups

    Sibirsk. Mat. Zh., 36:6 (1995),  1317–1327
  67. On extension of functions of bounded mean oscillation from domains in a space of homogeneous type with intrinsic metric

    Sibirsk. Mat. Zh., 36:5 (1995),  1015–1048
  68. Exceptional sets for solutions to subelliptic equations

    Sibirsk. Mat. Zh., 36:4 (1995),  805–818
  69. Weighted Sobolev spaces and boundary behavior of solutions to degenerate hypoelliptic equations

    Sibirsk. Mat. Zh., 36:2 (1995),  278–300
  70. Thin sets in weighted potential theory and degenerate elliptic equations

    Sibirsk. Mat. Zh., 36:1 (1995),  28–36
  71. Removable singularities of bounded solutions of quasi-elliptic equations

    Sibirsk. Mat. Zh., 33:4 (1992),  3–14
  72. Weighted $L_p$ potential theory on homogeneous groups

    Sibirsk. Mat. Zh., 33:2 (1992),  29–48
  73. Intrinsic metrics and boundary values of functions of Zygmund classes

    Sibirsk. Mat. Zh., 32:2 (1991),  3–12
  74. Weighted $L_p$ potential theory on homogeneous groups

    Dokl. Akad. Nauk SSSR, 314:1 (1990),  37–41
  75. The $L_p$ potential theory for generalized kernels

    Mat. Zametki, 47:5 (1990),  146–148
  76. $L_p$-theory of potential and quasiconformal mappings on homogeneous groups

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 14 (1989),  45–89
  77. Potential theory on homogeneous groups

    Mat. Sb., 180:1 (1989),  57–77
  78. Mappings of homogeneous groups and imbeddings of functional spaces

    Sibirsk. Mat. Zh., 30:5 (1989),  25–41
  79. Intrinsic geometries and boundary values of differentiable functions. I

    Sibirsk. Mat. Zh., 30:2 (1989),  29–42
  80. Potential theory on homogeneous groups

    Dokl. Akad. Nauk SSSR, 303:1 (1988),  11–15
  81. Equivalent normings of spaces of differentiable functions in domains and their applications

    Dokl. Akad. Nauk SSSR, 300:4 (1988),  777–781
  82. Quasielliptic $L_p$-theory of potential and its applications

    Dokl. Akad. Nauk SSSR, 298:4 (1988),  780–784
  83. The maximum principle in potential theory and embedding theorems for anisotropic spaces of differentiable functions

    Sibirsk. Mat. Zh., 29:2 (1988),  17–33
  84. Geometric properties of domains and estimates for the norm of an extension operator

    Dokl. Akad. Nauk SSSR, 292:4 (1987),  791–795
  85. Isoperimetric relations and conditions for the extension of differentiable functions

    Dokl. Akad. Nauk SSSR, 292:1 (1987),  11–15
  86. Geometric properties of domains and mappings. Lower bounds on the norm of the extension operator

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 7 (1987),  70–101
  87. On geometric properties of functions with generalized first derivatives

    Uspekhi Mat. Nauk, 34:1(205) (1979),  17–65
  88. A criterion for the extension of functions of the class $L_2^1$ from unbounded plane domains

    Sibirsk. Mat. Zh., 20:2 (1979),  416–419
  89. Metric completion of a domain by using a conformal capacity invariant under quasi-conformal mappings

    Dokl. Akad. Nauk SSSR, 238:5 (1978),  1040–1042
  90. A test of the removability of sets for $L_p^1$ spaces of quasiconformal and quasi-isomorphic mappings

    Sibirsk. Mat. Zh., 18:1 (1977),  48–68
  91. Functional characterizations of quasi-isometric mappings

    Sibirsk. Mat. Zh., 17:4 (1976),  768–773
  92. Quasiconformal mappings, and spaces of functions with first generalized derivatives

    Sibirsk. Mat. Zh., 17:3 (1976),  515–531
  93. A criterion for the possibility of eliminating sets for the spaces $W_p^1$ of quasiconformal and quasi-isometric mappings

    Dokl. Akad. Nauk SSSR, 220:4 (1975),  769–771
  94. The boundary correspondence for quasiconformal mappings of $n$-dimensional domains

    Sibirsk. Mat. Zh., 16:3 (1975),  630–633
  95. Lattice isomorphisms of the spaces $W_n^1$ and quasiconformal mappings

    Sibirsk. Mat. Zh., 16:2 (1975),  224–246
  96. Lattice isomorphisms of the spaces $W_n^1$, and quasiconformal mappings

    Dokl. Akad. Nauk SSSR, 215:1 (1974),  24–26
  97. Estimates of the deviation of quasi-umbilical surfaces from a sphere

    Sibirsk. Mat. Zh., 11:5 (1970),  971–987

  98. Stefan Grigorievich Samko (on the occasion of his 80th birthday)

    Vladikavkaz. Mat. Zh., 23:3 (2021),  126–129
  99. To the 65-th anniversary of prof. A. G. Kusraev

    Vladikavkaz. Mat. Zh., 20:2 (2018),  111–119
  100. Vladimir Mikhailovich Miklyukov (obituary)

    Uspekhi Mat. Nauk, 69:3(417) (2014),  173–176
  101. Mikhail Abramovich Taitslin (1936–2013)

    Sib. Èlektron. Mat. Izv., 10 (2013),  54–65
  102. Anatoly Georgievich Kusraev is 60

    Sib. Èlektron. Mat. Izv., 10 (2013),  13–29
  103. Anatolii Georgievich Kusraev (on the occasion of his 60th anniversary)

    Vladikavkaz. Mat. Zh., 15:1 (2013),  90–97
  104. Yurii Grigor'evich Reshetnyak (on his 80th birthday)

    Uspekhi Mat. Nauk, 64:5(389) (2009),  185–188
  105. Yurii Grigor'evich Reshetnyak (on the occasion of his 80th birthday)

    Sibirsk. Mat. Zh., 50:5 (2009),  959–962
  106. Yuri Fedorovich Borisov (1925–2007)

    Sib. Èlektron. Mat. Izv., 4 (2007),  28–30


© Steklov Math. Inst. of RAS, 2025