RUS  ENG
Full version
PEOPLE

Fedorov Vladimir Evgen'evich

Publications in Math-Net.Ru

  1. Research on controllability issues for equations with the Hilfer derivative and with bounded operators in Banach spaces

    Chelyab. Fiz.-Mat. Zh., 9:4 (2024),  552–560
  2. Direct and inverse problems for linear equations with Caputo — Fabrizio derivative and a bounded operator

    Chelyab. Fiz.-Mat. Zh., 9:3 (2024),  389–406
  3. Metrical Bochner criterion and metrical Stepanov almost periodicity

    Chelyab. Fiz.-Mat. Zh., 9:1 (2024),  90–100
  4. A Class of Quasilinear Equations with Hilfer Derivatives

    Mat. Zametki, 115:5 (2024),  817–828
  5. Integro-differential equations of Gerasimov type with sectorial operators

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  243–258
  6. Makhmud Salakhitdinovich Salakhitdinov

    Chelyab. Fiz.-Mat. Zh., 8:4 (2023),  463–468
  7. Nonlinear inverse problems for some equations with fractional derivatives

    Chelyab. Fiz.-Mat. Zh., 8:2 (2023),  190–202
  8. Integro-differential equations in Banach spaces and analytic resolving families of operators

    CMFD, 69:1 (2023),  166–184
  9. Recovery of the Laplace–Bessel operator of a function by the spectrum, which is specified not everywhere

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 228 (2023),  52–57
  10. Quasilinear equations with fractional Gerasimov–Caputo derivative. Sectorial case

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226 (2023),  127–137
  11. Linearly Autonomous Symmetries of a Fractional Guéant–Pu Model

    Mat. Zametki, 114:6 (2023),  1368–1380
  12. A class of quasilinear equations with Hilfer derivatives

    Applied Mathematics & Physics, 55:4 (2023),  289–298
  13. Quasilinear Equations with a Sectorial Set of Operators at Gerasimov–Caputo Derivatives

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  248–259
  14. Arlen Mikhaylovich Il'in. 90 years since the birth

    Chelyab. Fiz.-Mat. Zh., 7:2 (2022),  135–138
  15. On solvability of some classes of equations with Hilfer derivative in Banach spaces

    Chelyab. Fiz.-Mat. Zh., 7:1 (2022),  11–19
  16. An inverse problem for a class of degenerate evolution multi-term equations with Gerasimov–Caputo derivatives

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022),  38–46
  17. Nonlinear inverse problems for a class of equations with Riemann–Liouville derivatives

    Zap. Nauchn. Sem. POMI, 519 (2022),  264–288
  18. Monotonicity of certain classes of functions related with Cusa — Huygens inequality

    Chelyab. Fiz.-Mat. Zh., 6:3 (2021),  331–337
  19. Initial value problems for equations with a composition of fractional derivatives

    Chelyab. Fiz.-Mat. Zh., 6:3 (2021),  269–277
  20. $c$-Almost periodic type distributions

    Chelyab. Fiz.-Mat. Zh., 6:2 (2021),  190–207
  21. Invariant solutions of the Guéant — Pu model of options pricing and hedging

    Chelyab. Fiz.-Mat. Zh., 6:1 (2021),  42–51
  22. Linear inverse problems for multi-term equations with Riemann — Liouville derivatives

    Bulletin of Irkutsk State University. Series Mathematics, 38 (2021),  36–53
  23. The accounting of illiquidity and transaction costs during the delta-hedging

    Applied Mathematics & Physics, 53:2 (2021),  132–143
  24. The defect of a Cauchy type problem for linear equations with several Riemann–Liouville derivatives

    Sibirsk. Mat. Zh., 62:5 (2021),  1143–1162
  25. Approximation and comparison of the empirical liquidity cost function for various futures contracts

    Mathematical notes of NEFU, 28:4 (2021),  101–113
  26. Initial value problems for some classes of linear evolution equations with several fractional derivatives

    Mathematical notes of NEFU, 28:3 (2021),  85–104
  27. Linear equations with discretely distributed fractional derivative in Banach spaces

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021),  264–280
  28. Asymptotically $(w,c)$-almost periodic type solutions of abstract degenerate non-scalar Volterra equations

    Chelyab. Fiz.-Mat. Zh., 5:4(1) (2020),  415–427
  29. A class of distributed order semilinear equations in Banach spaces

    Chelyab. Fiz.-Mat. Zh., 5:3 (2020),  342–351
  30. Issues of unique solvability and approximate controllability of linear fractional order equations with a Hölderian right-hand side

    Chelyab. Fiz.-Mat. Zh., 5:1 (2020),  5–21
  31. The optimal rehedging interval for the options portfolio within the RAMP, taking into account transaction costs and liquidity costs

    Bulletin of Irkutsk State University. Series Mathematics, 31 (2020),  3–17
  32. Initial-value problem for distributed-order equations with a bounded operator

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 188 (2020),  14–22
  33. Linear inverse problems for degenerate evolution equations with the Gerasimov–Caputo derivative in the sectorial case

    Mathematical notes of NEFU, 27:2 (2020),  54–76
  34. On generation of an analytic in a sector resolving operators family for a distributed order equation

    Zap. Nauchn. Sem. POMI, 489 (2020),  113–129
  35. The Cauchy problem for a semilinear equation of the distributed order

    Chelyab. Fiz.-Mat. Zh., 4:4 (2019),  439–444
  36. A note on (asymptotically) Weyl-almost periodic properties of convolution products

    Chelyab. Fiz.-Mat. Zh., 4:2 (2019),  195–206
  37. Inverse problem for evolutionary equation with the Gerasimov–Caputo fractional derivative in the sectorial case

    Bulletin of Irkutsk State University. Series Mathematics, 28 (2019),  123–137
  38. Inverse linear problems for a certain class of degenerate fractional evolution equations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019),  97–111
  39. Time decay comparison for option straddle in case of insufficient liquidity or transaction costs

    Applied Mathematics & Physics, 51:3 (2019),  451–459
  40. A Cauchy type problem for a degenerate equation with the Riemann–Liouville derivative in the sectorial case

    Sibirsk. Mat. Zh., 60:2 (2019),  461–477
  41. Comparing of some sensitivities for nonlinear models comparing of some sensitivities (Greeks) for nonlinear models of option pricing with market illiquidity

    Mathematical notes of NEFU, 26:2 (2019),  94–108
  42. Criterion of the approximate controllability of a class of degenerate distributed systems with the Riemann–Liouville derivative

    Mathematical notes of NEFU, 26:2 (2019),  41–59
  43. Simulation of feedback effects for futures-style options pricing on Moscow Exchange

    Chelyab. Fiz.-Mat. Zh., 3:4 (2018),  379–394
  44. Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations

    Chelyab. Fiz.-Mat. Zh., 3:1 (2018),  5–26
  45. On a class of abstract degenerate multi-term fractional differential equations in locally convex spaces

    Eurasian Math. J., 9:3 (2018),  33–57
  46. Inhomogeneous Fractional Evolutionary Equation in the Sectorial Case

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149 (2018),  103–112
  47. Disjoint hypercyclic and disjoint topologically mixing properties of degenerate fractional differential equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 7,  36–53
  48. Degenerate linear evolution equations with the Riemann–Liouville fractional derivative

    Sibirsk. Mat. Zh., 59:1 (2018),  171–184
  49. The Cauchy problem for distributed order equations in Banach spaces

    Mathematical notes of NEFU, 25:1 (2018),  63–72
  50. Homogeneous solution of the Baer — Nunziato model

    Chelyab. Fiz.-Mat. Zh., 2:3 (2017),  323–328
  51. Symmetry analysis of nonlinear pseudoparabolic equation

    Chelyab. Fiz.-Mat. Zh., 2:2 (2017),  152–168
  52. On analytical in a sector resolving families of operators for strongly degenerate evolution equations of higher and fractional orders

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 137 (2017),  82–96
  53. Symmetries and exact solutions of a nonlinear pricing options equation

    Ufimsk. Mat. Zh., 9:1 (2017),  29–41
  54. Group classification of the quasistationary phase fileld equations system

    Chelyab. Fiz.-Mat. Zh., 1:3 (2016),  63–76
  55. On unique solvability of the system of gravitational-gyroscopic waves in the Boussinesq approximation

    Chelyab. Fiz.-Mat. Zh., 1:2 (2016),  16–23
  56. Group analysis of a quasilinear equation

    Chelyab. Fiz.-Mat. Zh., 1:1 (2016),  93–103
  57. Study of degenerate evolution equations with memory by operator semigroup methods

    Sibirsk. Mat. Zh., 57:4 (2016),  899–912
  58. Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case

    Mathematical notes of NEFU, 23:4 (2016),  58–72
  59. Symmetry analysis and exact solutions for a nonlinear model of the financial markets theory

    Mathematical notes of NEFU, 23:1 (2016),  28–45
  60. Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators

    Ufimsk. Mat. Zh., 8:4 (2016),  100–113
  61. Group classification for a general nonlinear model of option pricing

    Ural Math. J., 2:2 (2016),  37–44
  62. Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order

    Sib. J. Pure and Appl. Math., 16:2 (2016),  93–107
  63. Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time

    Bulletin of Irkutsk State University. Series Mathematics, 12 (2015),  12–22
  64. Resolving operators of degenerate evolution equations with fractional derivative with respect to time

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 1,  71–83
  65. On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative

    Mat. Zametki, 98:3 (2015),  414–426
  66. Time nonlocal boundary value problem for a linearized phase field equations system

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:3 (2015),  10–15
  67. Solvability of weighted linear evolution equations with degenerate operator at the derivative

    Algebra i Analiz, 26:3 (2014),  190–206
  68. On solvability of degenerate linear evolution equations with memory effects

    Bulletin of Irkutsk State University. Series Mathematics, 10 (2014),  106–124
  69. Linear equations of the Sobolev type with integral delay operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 1,  71–81
  70. On a time nonlocal problem for inhomogeneous evolution equations

    Sibirsk. Mat. Zh., 55:4 (2014),  882–897
  71. On control of degenerate distributed systems

    Ufimsk. Mat. Zh., 6:2 (2014),  78–98
  72. Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  267–278
  73. Invariant solutions of a nonclassical mathematical physics equation

    Vestnik Chelyabinsk. Gos. Univ., 2013, no. 16,  119–124
  74. Exact null controllability of degenerate evolution equations with scalar control

    Mat. Sb., 203:12 (2012),  137–156
  75. Inhomogeneous degenerate Sobolev type equations with delay

    Sibirsk. Mat. Zh., 53:2 (2012),  418–429
  76. Symmetries of a class of quasilinear pseudoparabolic equations. Invariant solutions

    Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15,  90–111
  77. Nonlinear inverse problem for the Oskolkov system, linearized in a stationary solution neighborhood

    Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15,  49–70
  78. On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative

    Izv. RAN. Ser. Mat., 75:2 (2011),  177–194
  79. The problem of start control for a class of semilinear distributed systems of Sobolev type

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  259–267
  80. A class of second order Sobolev type equations and degenerate groups of operators

    Vestnik Chelyabinsk. Gos. Univ., 2011, no. 13,  59–75
  81. Global solvability of some semilinear equations of Sobolev type

    Vestnik Chelyabinsk. Gos. Univ., 2010, no. 12,  80–87
  82. On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations

    Mat. Zametki, 85:3 (2009),  440–450
  83. Properties od pseudoresolvents and conditions of the existence of degenerate operator semigroups

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  12–19
  84. On solvability of perturbed Sobolev type equations

    Algebra i Analiz, 20:4 (2008),  189–217
  85. Holomorphic operator semigroups with strong degeneration

    Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10,  68–74
  86. Solutions, bounded on the line, of Sobolev-type linear equations with relatively sectorial operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 4,  81–84
  87. A generalization of the Hille–Yosida Theorem to the case of degenerate semigroups in locally convex spaces

    Sibirsk. Mat. Zh., 46:2 (2005),  426–448
  88. Optimal control of Sobolev type linear equations

    Differ. Uravn., 40:11 (2004),  1548–1556
  89. Strongly Holomorphic Groups of Linear Equations of Sobolev Type in Locally Convex Spaces

    Differ. Uravn., 40:5 (2004),  702–712
  90. Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces

    Mat. Sb., 195:8 (2004),  131–160
  91. Weak solutions of linear equations of Sobolev type and semigroups of operators

    Izv. RAN. Ser. Mat., 67:4 (2003),  171–188
  92. Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces

    Mat. Zametki, 74:4 (2003),  618–628
  93. Теорема Иосиды и разрешающие группы уравнений соболевского типа в локально выпуклых пространствах

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 9,  197–214
  94. One-Dimensional Controllability of Sobolev Linear Equations in Hilbert Spaces

    Differ. Uravn., 38:8 (2002),  1137–1139
  95. Полугруппы операторов с ядрами

    Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6,  42–70
  96. Smoothness of Solutions of Linear Equations of Sobolev Type

    Differ. Uravn., 37:12 (2001),  1646–1649
  97. Degenerate strongly continuous semigroups of operators

    Algebra i Analiz, 12:3 (2000),  173–200
  98. Degenerate strongly continuous groups of operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 3,  54–65
  99. Infinitely differentiable semigroups of operators with kernels

    Sibirsk. Mat. Zh., 40:6 (1999),  1409–1421
  100. О совпадении фазового пространства уравнения соболевского типа с образом разрешающей группы в случае существенно особой точки в бесконечности

    Vestnik Chelyabinsk. Gos. Univ., 1999, no. 4,  198–202
  101. On units of analytic semigroups of operators with kernels

    Sibirsk. Mat. Zh., 39:3 (1998),  604–616
  102. Linear equations of Sobolev type with relatively $p$-radial operators

    Dokl. Akad. Nauk, 351:3 (1996),  316–318
  103. Генераторы аналитических групп с ядрами

    Vestnik Chelyabinsk. Gos. Univ., 1996, no. 3,  184–189
  104. Analytic semigroups with kernel and linear equations of Sobolev type

    Sibirsk. Mat. Zh., 36:5 (1995),  1130–1145

  105. Batirkhan Khudaibergenovich Turmetov (to the 60th anniversary)

    Chelyab. Fiz.-Mat. Zh., 6:1 (2021),  5–8
  106. К 70-летию профессора Вячеслава Николаевича Павленко

    Chelyab. Fiz.-Mat. Zh., 2:4 (2017),  383–387
  107. Arlen Mikhaylovich Il’in. Towards 85th birthday

    Chelyab. Fiz.-Mat. Zh., 2:1 (2017),  5–9


© Steklov Math. Inst. of RAS, 2025