|
|
Publications in Math-Net.Ru
-
Research on controllability issues for equations with the Hilfer derivative and with bounded operators in Banach spaces
Chelyab. Fiz.-Mat. Zh., 9:4 (2024), 552–560
-
Direct and inverse problems for linear equations with Caputo — Fabrizio derivative and a bounded operator
Chelyab. Fiz.-Mat. Zh., 9:3 (2024), 389–406
-
Metrical Bochner criterion and metrical Stepanov almost periodicity
Chelyab. Fiz.-Mat. Zh., 9:1 (2024), 90–100
-
A Class of Quasilinear Equations with Hilfer Derivatives
Mat. Zametki, 115:5 (2024), 817–828
-
Integro-differential equations of Gerasimov type with sectorial operators
Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024), 243–258
-
Makhmud Salakhitdinovich Salakhitdinov
Chelyab. Fiz.-Mat. Zh., 8:4 (2023), 463–468
-
Nonlinear inverse problems for some equations with fractional derivatives
Chelyab. Fiz.-Mat. Zh., 8:2 (2023), 190–202
-
Integro-differential equations in Banach spaces and analytic resolving families of operators
CMFD, 69:1 (2023), 166–184
-
Recovery of the Laplace–Bessel operator of a function by the spectrum, which is specified not everywhere
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 228 (2023), 52–57
-
Quasilinear equations with fractional Gerasimov–Caputo derivative. Sectorial case
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226 (2023), 127–137
-
Linearly Autonomous Symmetries of a Fractional Guéant–Pu Model
Mat. Zametki, 114:6 (2023), 1368–1380
-
A class of quasilinear equations with Hilfer derivatives
Applied Mathematics & Physics, 55:4 (2023), 289–298
-
Quasilinear Equations with a Sectorial Set of Operators at Gerasimov–Caputo Derivatives
Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023), 248–259
-
Arlen Mikhaylovich Il'in. 90 years since the birth
Chelyab. Fiz.-Mat. Zh., 7:2 (2022), 135–138
-
On solvability of some classes of equations with Hilfer derivative in Banach spaces
Chelyab. Fiz.-Mat. Zh., 7:1 (2022), 11–19
-
An inverse problem for a class of degenerate evolution multi-term equations with Gerasimov–Caputo derivatives
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022), 38–46
-
Nonlinear inverse problems for a class of equations with Riemann–Liouville derivatives
Zap. Nauchn. Sem. POMI, 519 (2022), 264–288
-
Monotonicity of certain classes of functions related with Cusa — Huygens inequality
Chelyab. Fiz.-Mat. Zh., 6:3 (2021), 331–337
-
Initial value problems for equations with a composition of fractional derivatives
Chelyab. Fiz.-Mat. Zh., 6:3 (2021), 269–277
-
$c$-Almost periodic type distributions
Chelyab. Fiz.-Mat. Zh., 6:2 (2021), 190–207
-
Invariant solutions of the Guéant — Pu model of options pricing and hedging
Chelyab. Fiz.-Mat. Zh., 6:1 (2021), 42–51
-
Linear inverse problems for multi-term equations with Riemann — Liouville derivatives
Bulletin of Irkutsk State University. Series Mathematics, 38 (2021), 36–53
-
The accounting of illiquidity and transaction costs during the delta-hedging
Applied Mathematics & Physics, 53:2 (2021), 132–143
-
The defect of a Cauchy type problem for linear equations with several Riemann–Liouville derivatives
Sibirsk. Mat. Zh., 62:5 (2021), 1143–1162
-
Approximation and comparison of the empirical liquidity cost function for various futures contracts
Mathematical notes of NEFU, 28:4 (2021), 101–113
-
Initial value problems for some classes of linear evolution equations with several fractional derivatives
Mathematical notes of NEFU, 28:3 (2021), 85–104
-
Linear equations with discretely distributed fractional derivative in Banach spaces
Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021), 264–280
-
Asymptotically $(w,c)$-almost periodic type solutions of abstract degenerate non-scalar Volterra equations
Chelyab. Fiz.-Mat. Zh., 5:4(1) (2020), 415–427
-
A class of distributed order semilinear equations in Banach spaces
Chelyab. Fiz.-Mat. Zh., 5:3 (2020), 342–351
-
Issues of unique solvability and approximate controllability of linear fractional order equations with a Hölderian right-hand side
Chelyab. Fiz.-Mat. Zh., 5:1 (2020), 5–21
-
The optimal rehedging interval for the options portfolio within the RAMP, taking into account transaction costs and liquidity costs
Bulletin of Irkutsk State University. Series Mathematics, 31 (2020), 3–17
-
Initial-value problem for distributed-order equations with a bounded operator
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 188 (2020), 14–22
-
Linear inverse problems for degenerate evolution equations with the Gerasimov–Caputo derivative in the sectorial case
Mathematical notes of NEFU, 27:2 (2020), 54–76
-
On generation of an analytic in a sector resolving operators family for a distributed order equation
Zap. Nauchn. Sem. POMI, 489 (2020), 113–129
-
The Cauchy problem for a semilinear
equation of the distributed order
Chelyab. Fiz.-Mat. Zh., 4:4 (2019), 439–444
-
A note on (asymptotically) Weyl-almost periodic properties of convolution products
Chelyab. Fiz.-Mat. Zh., 4:2 (2019), 195–206
-
Inverse problem for evolutionary equation with the Gerasimov–Caputo fractional derivative in the sectorial case
Bulletin of Irkutsk State University. Series Mathematics, 28 (2019), 123–137
-
Inverse linear problems for a certain class of degenerate fractional evolution equations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 167 (2019), 97–111
-
Time decay comparison for option straddle in case of insufficient liquidity or transaction costs
Applied Mathematics & Physics, 51:3 (2019), 451–459
-
A Cauchy type problem for a degenerate equation with the Riemann–Liouville derivative in the sectorial case
Sibirsk. Mat. Zh., 60:2 (2019), 461–477
-
Comparing of some sensitivities for nonlinear models comparing of some sensitivities (Greeks) for nonlinear models of option pricing with market illiquidity
Mathematical notes of NEFU, 26:2 (2019), 94–108
-
Criterion of the approximate controllability of a class of degenerate distributed systems with the Riemann–Liouville derivative
Mathematical notes of NEFU, 26:2 (2019), 41–59
-
Simulation of feedback effects for futures-style options pricing on Moscow Exchange
Chelyab. Fiz.-Mat. Zh., 3:4 (2018), 379–394
-
Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations
Chelyab. Fiz.-Mat. Zh., 3:1 (2018), 5–26
-
On a class of abstract degenerate multi-term fractional differential equations in locally convex spaces
Eurasian Math. J., 9:3 (2018), 33–57
-
Inhomogeneous Fractional Evolutionary Equation in the Sectorial Case
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 149 (2018), 103–112
-
Disjoint hypercyclic and disjoint topologically mixing properties of degenerate fractional differential equations
Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 7, 36–53
-
Degenerate linear evolution equations with the Riemann–Liouville fractional derivative
Sibirsk. Mat. Zh., 59:1 (2018), 171–184
-
The Cauchy problem for distributed order equations in Banach spaces
Mathematical notes of NEFU, 25:1 (2018), 63–72
-
Homogeneous solution of the Baer — Nunziato model
Chelyab. Fiz.-Mat. Zh., 2:3 (2017), 323–328
-
Symmetry analysis of nonlinear pseudoparabolic equation
Chelyab. Fiz.-Mat. Zh., 2:2 (2017), 152–168
-
On analytical in a sector resolving families of operators for strongly degenerate evolution equations of higher and fractional orders
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 137 (2017), 82–96
-
Symmetries and exact solutions of a nonlinear pricing options equation
Ufimsk. Mat. Zh., 9:1 (2017), 29–41
-
Group classification of the quasistationary phase fileld equations system
Chelyab. Fiz.-Mat. Zh., 1:3 (2016), 63–76
-
On unique solvability of the system of gravitational-gyroscopic waves in the Boussinesq approximation
Chelyab. Fiz.-Mat. Zh., 1:2 (2016), 16–23
-
Group analysis of a quasilinear equation
Chelyab. Fiz.-Mat. Zh., 1:1 (2016), 93–103
-
Study of degenerate evolution equations with memory by operator semigroup methods
Sibirsk. Mat. Zh., 57:4 (2016), 899–912
-
Resolving operators of a linear degenerate evolution equation with Caputo derivative. The sectorial case
Mathematical notes of NEFU, 23:4 (2016), 58–72
-
Symmetry analysis and exact solutions for a nonlinear model of the financial markets theory
Mathematical notes of NEFU, 23:1 (2016), 28–45
-
Degenerate fractional differential equations in locally convex spaces with a $\sigma$-regular pair of operators
Ufimsk. Mat. Zh., 8:4 (2016), 100–113
-
Group classification for a general nonlinear model of option pricing
Ural Math. J., 2:2 (2016), 37–44
-
Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order
Sib. J. Pure and Appl. Math., 16:2 (2016), 93–107
-
Solutions for initial boundary value problems for some degenerate equations systems of fractional order with respect to the time
Bulletin of Irkutsk State University. Series Mathematics, 12 (2015), 12–22
-
Resolving operators of degenerate evolution equations with fractional derivative with respect to time
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 1, 71–83
-
On the Local Existence of Solutions of Equations with Memory not Solvable with Respect to the Time Derivative
Mat. Zametki, 98:3 (2015), 414–426
-
Time nonlocal boundary value problem for a linearized phase field equations system
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:3 (2015), 10–15
-
Solvability of weighted linear evolution equations with degenerate operator at the derivative
Algebra i Analiz, 26:3 (2014), 190–206
-
On solvability of degenerate linear evolution equations with memory effects
Bulletin of Irkutsk State University. Series Mathematics, 10 (2014), 106–124
-
Linear equations of the Sobolev type with integral delay operator
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 1, 71–81
-
On a time nonlocal problem for inhomogeneous evolution equations
Sibirsk. Mat. Zh., 55:4 (2014), 882–897
-
On control of degenerate distributed systems
Ufimsk. Mat. Zh., 6:2 (2014), 78–98
-
Semilinear degenerate evolution equations and nonlinear systems of hydrodynamic type
Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013), 267–278
-
Invariant solutions of a nonclassical mathematical physics equation
Vestnik Chelyabinsk. Gos. Univ., 2013, no. 16, 119–124
-
Exact null controllability of degenerate evolution equations with scalar control
Mat. Sb., 203:12 (2012), 137–156
-
Inhomogeneous degenerate Sobolev type equations with delay
Sibirsk. Mat. Zh., 53:2 (2012), 418–429
-
Symmetries of a class of quasilinear pseudoparabolic equations. Invariant solutions
Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15, 90–111
-
Nonlinear inverse problem for the Oskolkov system, linearized in a stationary solution neighborhood
Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15, 49–70
-
On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative
Izv. RAN. Ser. Mat., 75:2 (2011), 177–194
-
The problem of start control for a class of semilinear distributed systems of Sobolev type
Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011), 259–267
-
A class of second order Sobolev type equations and degenerate groups of operators
Vestnik Chelyabinsk. Gos. Univ., 2011, no. 13, 59–75
-
Global solvability of some semilinear equations of Sobolev type
Vestnik Chelyabinsk. Gos. Univ., 2010, no. 12, 80–87
-
On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations
Mat. Zametki, 85:3 (2009), 440–450
-
Properties od pseudoresolvents and conditions of the existence of degenerate operator semigroups
Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11, 12–19
-
On solvability of perturbed Sobolev type equations
Algebra i Analiz, 20:4 (2008), 189–217
-
Holomorphic operator semigroups with strong degeneration
Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10, 68–74
-
Solutions, bounded on the line, of Sobolev-type linear equations with relatively sectorial operators
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 4, 81–84
-
A generalization of the Hille–Yosida Theorem to the case of degenerate semigroups in locally convex spaces
Sibirsk. Mat. Zh., 46:2 (2005), 426–448
-
Optimal control of Sobolev type linear equations
Differ. Uravn., 40:11 (2004), 1548–1556
-
Strongly Holomorphic Groups of Linear Equations of Sobolev Type in Locally Convex Spaces
Differ. Uravn., 40:5 (2004), 702–712
-
Holomorphic solution semigroups for Sobolev-type equations in locally convex spaces
Mat. Sb., 195:8 (2004), 131–160
-
Weak solutions of linear equations of Sobolev type and semigroups of operators
Izv. RAN. Ser. Mat., 67:4 (2003), 171–188
-
Controllability in Dimensions One and Two of Sobolev-Type Equations in Banach Spaces
Mat. Zametki, 74:4 (2003), 618–628
-
Теорема Иосиды и разрешающие группы уравнений
соболевского типа в локально выпуклых пространствах
Vestnik Chelyabinsk. Gos. Univ., 2003, no. 9, 197–214
-
One-Dimensional Controllability of Sobolev Linear Equations in Hilbert Spaces
Differ. Uravn., 38:8 (2002), 1137–1139
-
Полугруппы операторов с ядрами
Vestnik Chelyabinsk. Gos. Univ., 2002, no. 6, 42–70
-
Smoothness of Solutions of Linear Equations of Sobolev Type
Differ. Uravn., 37:12 (2001), 1646–1649
-
Degenerate strongly continuous semigroups of operators
Algebra i Analiz, 12:3 (2000), 173–200
-
Degenerate strongly continuous groups of operators
Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 3, 54–65
-
Infinitely differentiable semigroups of operators with kernels
Sibirsk. Mat. Zh., 40:6 (1999), 1409–1421
-
О совпадении фазового пространства уравнения
соболевского типа с образом разрешающей группы в случае
существенно особой точки в бесконечности
Vestnik Chelyabinsk. Gos. Univ., 1999, no. 4, 198–202
-
On units of analytic semigroups of operators with kernels
Sibirsk. Mat. Zh., 39:3 (1998), 604–616
-
Linear equations of Sobolev type with relatively $p$-radial
operators
Dokl. Akad. Nauk, 351:3 (1996), 316–318
-
Генераторы аналитических групп с ядрами
Vestnik Chelyabinsk. Gos. Univ., 1996, no. 3, 184–189
-
Analytic semigroups with kernel and linear equations of Sobolev type
Sibirsk. Mat. Zh., 36:5 (1995), 1130–1145
-
Batirkhan Khudaibergenovich Turmetov (to the 60th anniversary)
Chelyab. Fiz.-Mat. Zh., 6:1 (2021), 5–8
-
К 70-летию профессора Вячеслава Николаевича Павленко
Chelyab. Fiz.-Mat. Zh., 2:4 (2017), 383–387
-
Arlen Mikhaylovich Il’in. Towards 85th birthday
Chelyab. Fiz.-Mat. Zh., 2:1 (2017), 5–9
© , 2025