RUS  ENG
Full version
PEOPLE

Malamud Mark Mikhailovich

Publications in Math-Net.Ru

  1. On subordination conditions for systems of minimal differential operators

    CMFD, 70:1 (2024),  121–149
  2. To Birman–Krein–Vishik theory

    Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023),  54–59
  3. On the Birman problem in the theory of nonnegative symmetric operators with compact inverse

    Funktsional. Anal. i Prilozhen., 57:2 (2023),  111–116
  4. Deficiency Indices of Block Jacobi Matrices That Do Not Satisfy the Carleman Condition, and Operators with Point Interactions

    Mat. Zametki, 114:5 (2023),  789–795
  5. On an asymptotic expansion of the characteristic determinant for $2 \times 2$ Dirac type systems

    Zap. Nauchn. Sem. POMI, 527 (2023),  94–136
  6. $j$-Self-Adjointness Conditions for Jacobi Matrices and Schrödinger and Dirac Operators with Point Interactions

    Mat. Zametki, 111:6 (2022),  940–946
  7. On characteristic determinants of boundary value problems for Dirac type systems

    Zap. Nauchn. Sem. POMI, 516 (2022),  69–120
  8. Sturm-Liouville operators with $W^{-1,1}$-matrix potentials

    Zap. Nauchn. Sem. POMI, 516 (2022),  20–39
  9. Deficiency indices of block Jacobi matrices: survey

    CMFD, 67:2 (2021),  237–254
  10. On the Discreteness of the Spectrum of Matrix Schrödinger and Dirac Operators with Point Interactions

    Mat. Zametki, 110:6 (2021),  932–938
  11. Invariant Schrödinger Operators with Point Interactions at the Vertices of a Regular Polyhedron

    Mat. Zametki, 110:3 (2021),  471–477
  12. Self-Adjointness and Discreteness of the Spectrum of Block Jacobi Matrices

    Mat. Zametki, 108:3 (2020),  457–462
  13. On the Deficiency Indices of Block Jacobi Matrices Related to Dirac Operators with Point Interactions

    Mat. Zametki, 106:6 (2019),  940–945
  14. Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions

    Funktsional. Anal. i Prilozhen., 51:3 (2017),  33–55
  15. Matrix Schrödinger Operator with $\delta$-Interactions

    Mat. Zametki, 100:1 (2016),  59–77
  16. Unique Determination of a System by a Part of the Monodromy Matrix

    Funktsional. Anal. i Prilozhen., 49:4 (2015),  33–49
  17. On the Unitary Equivalence of the Proper Extensions of a Hermitian Operator and the Weyl Function

    Mat. Zametki, 91:2 (2012),  316–320
  18. Positive Definite Functions and Spectral Properties of the Schrödinger Operator with Point Interactions

    Mat. Zametki, 90:1 (2011),  151–156
  19. One-dimensional Schrödinger operator with $\delta$-interactions

    Funktsional. Anal. i Prilozhen., 44:2 (2010),  87–91
  20. On the Completeness of the System of Root Vectors of the Sturm–Liouville Operator with General Boundary Conditions

    Funktsional. Anal. i Prilozhen., 42:3 (2008),  45–52
  21. On an Analog of de Leeuw and Mirkil Theorem for Operators with Variable Coeficients

    Mat. Zametki, 83:5 (2008),  783–786
  22. Elliptic and weakly coercive systems of operators in Sobolev spaces

    Mat. Sb., 199:11 (2008),  75–112
  23. Spectral theory of operator measures in Hilbert space

    Algebra i Analiz, 15:3 (2003),  1–77
  24. Generalized Resolvents of Symmetric Operators

    Mat. Zametki, 73:3 (2003),  460–465
  25. On the Spectral Theory of Operator Measures

    Funktsional. Anal. i Prilozhen., 36:2 (2002),  83–89
  26. Invariant and Hyperinvariant Subspace Lattices of Operators $J^\alpha\otimes B$ in Sobolev Spaces

    Mat. Zametki, 70:4 (2001),  560–567
  27. Completeness Theorems for Systems of Differential Equations

    Funktsional. Anal. i Prilozhen., 34:4 (2000),  88–90
  28. Similarity of a triangular operator to a diagonal one

    Zap. Nauchn. Sem. POMI, 270 (2000),  201–241
  29. Borg Type Theorems for First-Order Systems on a Finite Interval

    Funktsional. Anal. i Prilozhen., 33:1 (1999),  75–80
  30. On reproducing subspaces of Volterra operators

    Dokl. Akad. Nauk, 351:4 (1996),  454–458
  31. The relation between the matrix potential of a Dirac system and its Wronskian

    Dokl. Akad. Nauk, 344:5 (1995),  601–604
  32. Estimates for systems of minimal and maximal differential operators in $L_p(\Omega)$

    Tr. Mosk. Mat. Obs., 56 (1995),  206–261
  33. Similarity of Volterra operators and related problems in the theory of differential equations of fractional orders

    Tr. Mosk. Mat. Obs., 55 (1994),  73–148
  34. Inverse problems for Weyl functions and preresolvent and resolvent matrices of Hermitian operators

    Dokl. Akad. Nauk, 326:1 (1992),  12–18
  35. Characteristic functions of linear operators

    Dokl. Akad. Nauk, 323:5 (1992),  816–822
  36. The resolvent matrix of a Hermitian operator and the moment problem with gaps

    Dokl. Akad. Nauk SSSR, 314:2 (1990),  273–278
  37. Boundary value problems for Hermitian operators with gaps

    Dokl. Akad. Nauk SSSR, 313:6 (1990),  1335–1340
  38. Estimates for a system of differential operators in $L_p(\Omega)$. A connection with results of L. Hörmander

    Dokl. Akad. Nauk SSSR, 312:6 (1990),  1312–1317
  39. On transformation operators for ordinary differential equations

    Tr. Mosk. Mat. Obs., 53 (1990),  68–97
  40. Extensions of Hermitian sectorial operators and dual pairs of contractions

    Dokl. Akad. Nauk SSSR, 305:1 (1989),  35–41
  41. A class of extensions of a Hermitian operator and the Weyl function

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 5,  71–75
  42. Sectorial extensions of a positive operator, and the characteristic function

    Dokl. Akad. Nauk SSSR, 298:3 (1988),  537–541
  43. An estimate for differential operators in uniform norm, and coercivity in S. L. Sobolev spaces

    Dokl. Akad. Nauk SSSR, 298:1 (1988),  32–36
  44. On the Weyl function and Hermite operators with lacunae

    Dokl. Akad. Nauk SSSR, 293:5 (1987),  1041–1046
  45. Some analogues of von-Heumann's inequality for $J$-contractions

    Zap. Nauchn. Sem. LOMI, 157 (1987),  165–172
  46. An analog of Nelson's theorem

    Funktsional. Anal. i Prilozhen., 19:2 (1985),  82–83
  47. Necessary conditions for the existence of a transformation operator for higher-order equations

    Funktsional. Anal. i Prilozhen., 16:3 (1982),  74–75
  48. Perturbations of a fractional integration operator

    Funktsional. Anal. i Prilozhen., 13:2 (1979),  85–86
  49. Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$

    Izv. Akad. Nauk SSSR Ser. Mat., 41:4 (1977),  768–793
  50. Disturbances of the differentiation operator in a finite, a semi-infinite, and an infinite interval

    Funktsional. Anal. i Prilozhen., 10:4 (1976),  91–92
  51. Tests for the linear equivalence of Volterra operators in the $L_p$ scale

    Uspekhi Mat. Nauk, 30:5(185) (1975),  217–218

  52. Mikhail Semenovich Agranovich (obituary)

    Uspekhi Mat. Nauk, 73:1(439) (2018),  173–178
  53. Leonid Romanovich Volevich (obituary)

    Uspekhi Mat. Nauk, 62:6(378) (2007),  157–160
  54. Leonid Romanovich Volevich (on his 70th birthday)

    Uspekhi Mat. Nauk, 59:5(359) (2004),  175–182


© Steklov Math. Inst. of RAS, 2024