|
|
Publications in Math-Net.Ru
-
On subordination conditions for systems of minimal differential operators
CMFD, 70:1 (2024), 121–149
-
To Birman–Krein–Vishik theory
Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 54–59
-
On the Birman problem in the theory of nonnegative symmetric operators with compact inverse
Funktsional. Anal. i Prilozhen., 57:2 (2023), 111–116
-
Deficiency Indices of Block Jacobi Matrices That Do Not Satisfy the Carleman Condition, and Operators with Point Interactions
Mat. Zametki, 114:5 (2023), 789–795
-
On an asymptotic expansion of the characteristic determinant for $2 \times 2$ Dirac type systems
Zap. Nauchn. Sem. POMI, 527 (2023), 94–136
-
$j$-Self-Adjointness Conditions for Jacobi Matrices and Schrödinger and Dirac Operators with Point Interactions
Mat. Zametki, 111:6 (2022), 940–946
-
On characteristic determinants of boundary value problems for Dirac type systems
Zap. Nauchn. Sem. POMI, 516 (2022), 69–120
-
Sturm-Liouville operators with $W^{-1,1}$-matrix potentials
Zap. Nauchn. Sem. POMI, 516 (2022), 20–39
-
Deficiency indices of block Jacobi matrices: survey
CMFD, 67:2 (2021), 237–254
-
On the Discreteness of the Spectrum of Matrix Schrödinger and Dirac Operators with Point Interactions
Mat. Zametki, 110:6 (2021), 932–938
-
Invariant Schrödinger Operators with Point Interactions at the Vertices of a Regular Polyhedron
Mat. Zametki, 110:3 (2021), 471–477
-
Self-Adjointness and Discreteness of the Spectrum of Block Jacobi Matrices
Mat. Zametki, 108:3 (2020), 457–462
-
On the Deficiency Indices of Block Jacobi Matrices Related to Dirac Operators with Point Interactions
Mat. Zametki, 106:6 (2019), 940–945
-
Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions
Funktsional. Anal. i Prilozhen., 51:3 (2017), 33–55
-
Matrix Schrödinger Operator with $\delta$-Interactions
Mat. Zametki, 100:1 (2016), 59–77
-
Unique Determination of a System by a Part of the Monodromy Matrix
Funktsional. Anal. i Prilozhen., 49:4 (2015), 33–49
-
On the Unitary Equivalence of the Proper Extensions of a Hermitian Operator and the Weyl Function
Mat. Zametki, 91:2 (2012), 316–320
-
Positive Definite Functions and Spectral Properties of the Schrödinger Operator with Point Interactions
Mat. Zametki, 90:1 (2011), 151–156
-
One-dimensional Schrödinger operator with $\delta$-interactions
Funktsional. Anal. i Prilozhen., 44:2 (2010), 87–91
-
On the Completeness of the System of Root Vectors of the Sturm–Liouville Operator with General Boundary Conditions
Funktsional. Anal. i Prilozhen., 42:3 (2008), 45–52
-
On an Analog of de Leeuw and Mirkil Theorem for Operators with Variable Coeficients
Mat. Zametki, 83:5 (2008), 783–786
-
Elliptic and weakly coercive systems of operators in Sobolev spaces
Mat. Sb., 199:11 (2008), 75–112
-
Spectral theory of operator measures in Hilbert space
Algebra i Analiz, 15:3 (2003), 1–77
-
Generalized Resolvents of Symmetric Operators
Mat. Zametki, 73:3 (2003), 460–465
-
On the Spectral Theory of Operator Measures
Funktsional. Anal. i Prilozhen., 36:2 (2002), 83–89
-
Invariant and Hyperinvariant Subspace Lattices of Operators $J^\alpha\otimes B$ in Sobolev Spaces
Mat. Zametki, 70:4 (2001), 560–567
-
Completeness Theorems for Systems of Differential Equations
Funktsional. Anal. i Prilozhen., 34:4 (2000), 88–90
-
Similarity of a triangular operator to a diagonal one
Zap. Nauchn. Sem. POMI, 270 (2000), 201–241
-
Borg Type Theorems for First-Order Systems on a Finite Interval
Funktsional. Anal. i Prilozhen., 33:1 (1999), 75–80
-
On reproducing subspaces of Volterra operators
Dokl. Akad. Nauk, 351:4 (1996), 454–458
-
The relation between the matrix potential of a Dirac system and
its Wronskian
Dokl. Akad. Nauk, 344:5 (1995), 601–604
-
Estimates for systems of minimal and maximal differential operators in $L_p(\Omega)$
Tr. Mosk. Mat. Obs., 56 (1995), 206–261
-
Similarity of Volterra operators and related problems in the theory of differential equations of fractional orders
Tr. Mosk. Mat. Obs., 55 (1994), 73–148
-
Inverse problems for Weyl functions and preresolvent and resolvent
matrices of Hermitian operators
Dokl. Akad. Nauk, 326:1 (1992), 12–18
-
Characteristic functions of linear operators
Dokl. Akad. Nauk, 323:5 (1992), 816–822
-
The resolvent matrix of a Hermitian operator and the moment
problem with gaps
Dokl. Akad. Nauk SSSR, 314:2 (1990), 273–278
-
Boundary value problems for Hermitian operators with gaps
Dokl. Akad. Nauk SSSR, 313:6 (1990), 1335–1340
-
Estimates for a system of differential operators in $L_p(\Omega)$. A connection with results of L. Hörmander
Dokl. Akad. Nauk SSSR, 312:6 (1990), 1312–1317
-
On transformation operators for ordinary differential equations
Tr. Mosk. Mat. Obs., 53 (1990), 68–97
-
Extensions of Hermitian sectorial operators and dual pairs of
contractions
Dokl. Akad. Nauk SSSR, 305:1 (1989), 35–41
-
A class of extensions of a Hermitian operator and the Weyl function
Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 5, 71–75
-
Sectorial extensions of a positive operator, and the
characteristic function
Dokl. Akad. Nauk SSSR, 298:3 (1988), 537–541
-
An estimate for differential operators in uniform norm, and coercivity in S. L. Sobolev spaces
Dokl. Akad. Nauk SSSR, 298:1 (1988), 32–36
-
On the Weyl function and Hermite operators with lacunae
Dokl. Akad. Nauk SSSR, 293:5 (1987), 1041–1046
-
Some analogues of von-Heumann's inequality for $J$-contractions
Zap. Nauchn. Sem. LOMI, 157 (1987), 165–172
-
An analog of Nelson's theorem
Funktsional. Anal. i Prilozhen., 19:2 (1985), 82–83
-
Necessary conditions for the existence of a transformation operator for higher-order equations
Funktsional. Anal. i Prilozhen., 16:3 (1982), 74–75
-
Perturbations of a fractional integration operator
Funktsional. Anal. i Prilozhen., 13:2 (1979), 85–86
-
Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$
Izv. Akad. Nauk SSSR Ser. Mat., 41:4 (1977), 768–793
-
Disturbances of the differentiation operator in a finite, a semi-infinite, and an infinite interval
Funktsional. Anal. i Prilozhen., 10:4 (1976), 91–92
-
Tests for the linear equivalence of Volterra operators in the $L_p$ scale
Uspekhi Mat. Nauk, 30:5(185) (1975), 217–218
-
Mikhail Semenovich Agranovich (obituary)
Uspekhi Mat. Nauk, 73:1(439) (2018), 173–178
-
Leonid Romanovich Volevich (obituary)
Uspekhi Mat. Nauk, 62:6(378) (2007), 157–160
-
Leonid Romanovich Volevich (on his 70th birthday)
Uspekhi Mat. Nauk, 59:5(359) (2004), 175–182
© , 2024