RUS  ENG
Full version
PEOPLE

Mednykh Alexander Dmitrievich

Publications in Math-Net.Ru

  1. On the structure of Laplacian characteristic polynomial of circulant graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024),  34–39
  2. The Kirchhoff indices for circulant graphs

    Sibirsk. Mat. Zh., 65:6 (2024),  1191–1206
  3. The generating function is rational for the number of rooted forests in a circulant graph

    Mat. Tr., 26:2 (2023),  129–137
  4. Cyclic coverings of graphs. Counting rooted spanning forests and trees, Kirchhoff index, and Jacobians

    Uspekhi Mat. Nauk, 78:3(471) (2023),  115–164
  5. On Jacobian group and complexity of the $Y$-graph

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  662–673
  6. Plans' periodicity theorem for Jacobian of circulant graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  51–54
  7. Fixed points of cyclic groups acting purely harmonically on a graph

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  617–621
  8. Kirchhoff index for circulant graphs and its asymptotics

    Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020),  43–47
  9. On the structure of the critical group of a circulant graph with non-constant jumps

    Uspekhi Mat. Nauk, 75:1(451) (2020),  197–198
  10. Elementary formulas for Kirchhoff index of Möbius ladder and Prism graphs

    Sib. Èlektron. Mat. Izv., 16 (2019),  1654–1661
  11. Mirror symmetries of hyperbolic tetrahedral manifolds

    Sib. Èlektron. Mat. Izv., 15 (2018),  1850–1856
  12. On the asymptotics of volume for non-Euclidean simplices

    Uspekhi Mat. Nauk, 72:5(437) (2017),  195–196
  13. On the Oikawa and Arakawa theorems for graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  243–252
  14. Volumes of hyperbolic hexahedra with $\overline{3}$-symmetry

    Sib. Èlektron. Mat. Izv., 13 (2016),  1150–1158
  15. An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds

    Sib. Èlektron. Mat. Izv., 13 (2016),  1017–1025
  16. The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces

    Sibirsk. Mat. Zh., 57:6 (2016),  1346–1360
  17. Recent progress in enumeration of hypermaps

    Zap. Nauchn. Sem. POMI, 446 (2016),  139–164
  18. On the existence of Euclidean structure on the figure eight knot with a bridge

    Yakutian Mathematical Journal, 22:4 (2015),  32–42
  19. On the pseudo-volume of a hyperbolic tetrahedron

    Yakutian Mathematical Journal, 22:4 (2015),  12–20
  20. On the volume of a hyperbolic octahedron with $\overline3$-symmetry

    Trudy Mat. Inst. Steklova, 288 (2015),  7–15
  21. On the Belyi functions of planar circular maps

    Fundam. Prikl. Mat., 18:6 (2013),  111–133
  22. On the enumeration of circular maps with given number of edges

    Sibirsk. Mat. Zh., 54:4 (2013),  788–806
  23. Î ôîðìóëå Áðàõìàãóïòû â ãåîìåòðèè Ëîáà÷åâñêîãî

    Mat. Pros., Ser. 3, 16 (2012),  172–180
  24. Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane

    Sib. Èlektron. Mat. Izv., 9 (2012),  247–255
  25. A volume formula for $\mathbb Z_2$-symmetric spherical tetrahedra

    Sibirsk. Mat. Zh., 52:3 (2011),  582–599
  26. Geometric orbifolds with torsion free derived subgroup

    Sibirsk. Mat. Zh., 51:1 (2010),  48–61
  27. The Volume of the Lambert Cube in Spherical Space

    Mat. Zametki, 86:2 (2009),  190–201
  28. Spherical structures on torus knots and links

    Sibirsk. Mat. Zh., 50:5 (2009),  1083–1096
  29. Discrete Analytical Functions of Several Variables and Taylor Expansion

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009),  38–46
  30. Löbell manifolds revised

    Sib. Èlektron. Mat. Izv., 4 (2007),  605–609
  31. Elementary formulas for a hyperbolic tetrahedron

    Sibirsk. Mat. Zh., 47:4 (2006),  831–841
  32. Hyperbolic 3-Manifolds with Geodesic Boundary: Enumeration and Volume Calculation

    Trudy Mat. Inst. Steklova, 252 (2006),  167–183
  33. A formula for the volume of a hyperbolic tetrahedon

    Uspekhi Mat. Nauk, 60:2(362) (2005),  159–160
  34. On the volume of a symmetric tetrahedron in hyperbolic and spherical spaces

    Sibirsk. Mat. Zh., 45:5 (2004),  1022–1031
  35. Surgeries on small volume hyperbolic 3-orbifolds

    Sibirsk. Mat. Zh., 42:2 (2001),  318–331
  36. Spherical Coxeter groups and hyperelliptic 3-manifolds

    Mat. Zametki, 66:2 (1999),  173–177
  37. Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions

    Sibirsk. Mat. Zh., 40:5 (1999),  1035–1051
  38. Three-dimensional hyperelliptic manifolds and Hamiltonian graphs

    Sibirsk. Mat. Zh., 40:4 (1999),  745–763
  39. The Heegaard genus of hyperbolic 3-manifolds of small volume

    Sibirsk. Mat. Zh., 37:5 (1996),  1013–1018
  40. Fibonacci manifolds as two-fold coverings of the three-dimensional sphere and the Meyerhoff–Neumann conjecture

    Sibirsk. Mat. Zh., 37:3 (1996),  534–542
  41. Hyperbolic volumes of Fibonacci manifolds

    Sibirsk. Mat. Zh., 36:2 (1995),  266–277
  42. Limit ordinals in the Thurston–Jorgensen theorem on the volumes of three-dimensional hyperbolic manifolds

    Dokl. Akad. Nauk, 336:1 (1994),  7–10
  43. Geometric properties of discrete groups acting with fixed points in a Lobachevskii space

    Dokl. Akad. Nauk SSSR, 300:1 (1988),  27–30
  44. The isometry group of the hyperbolic space of a Seifert–Weber dodecahedron

    Sibirsk. Mat. Zh., 28:5 (1987),  134–144
  45. The number of nonequivalent coverings over a compact nonorientable surface

    Sibirsk. Mat. Zh., 27:1 (1986),  123–131
  46. Groups of automorphisms of three-dimensional hyperbolic manifolds

    Dokl. Akad. Nauk SSSR, 285:1 (1985),  40–44
  47. Nonequivalent coverings of Riemann surfaces with a prescribed ramification type

    Sibirsk. Mat. Zh., 25:4 (1984),  120–142
  48. On the Hurwitz problem on the number of inequivalent coverings over a compact Riemann surface

    Sibirsk. Mat. Zh., 23:3 (1982),  155–160
  49. On the solution of the Hurwitz problem on the number of nonequivalent coverings over a compact Riemann surface

    Dokl. Akad. Nauk SSSR, 261:3 (1981),  537–542
  50. On unramified coverings of compact Riemann surfaces

    Dokl. Akad. Nauk SSSR, 244:3 (1979),  529–532
  51. Determination of the number of nonequivalent coverings over a compact Riemann surface

    Dokl. Akad. Nauk SSSR, 239:2 (1978),  269–271
  52. A class of difference equations with polynomial coefficients

    Sibirsk. Mat. Zh., 19:6 (1978),  1315–1331
  53. On an example of a compact Riemann surface with trivial automorphism group

    Dokl. Akad. Nauk SSSR, 237:1 (1977),  32–34
  54. On branched coverings of Riemann surfaces with the trivial group of covering transformations

    Dokl. Akad. Nauk SSSR, 235:6 (1977),  1267–1269
  55. On semidirect products of discontinuous transformation groups

    Dokl. Akad. Nauk SSSR, 225:5 (1975),  1016–1017

  56. Viktor Vasil’evich Chueshev is 70

    Sib. Èlektron. Mat. Izv., 14 (2017),  69–79
  57. Vladislav Vasil'evich Aseev is 70

    Sib. Èlektron. Mat. Izv., 14 (2017),  43–57
  58. On Graphs and Groups, Spectra and Symmetries held on August 15–28, 2016, Novosibirsk, Russia

    Sib. Èlektron. Mat. Izv., 13 (2016),  1369–1382
  59. Workshop on geometry and topology of three-dimensional manifolds

    Sib. Èlektron. Mat. Izv., 3 (2006),  1–3


© Steklov Math. Inst. of RAS, 2025