RUS  ENG
Full version
PEOPLE

Kostochka Aleksandr Vasil'evich

Publications in Math-Net.Ru

  1. On sizes of $1$-cross intersecting set pair systems

    Sibirsk. Mat. Zh., 62:5 (2021),  1039–1048
  2. On differences between DP-coloring and list coloring

    Mat. Tr., 21:2 (2018),  61–71
  3. On DP-coloring of graphs and multigraphs

    Sibirsk. Mat. Zh., 58:1 (2017),  36–47
  4. Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most $1$

    Sibirsk. Mat. Zh., 52:5 (2011),  1004–1010
  5. A new bound on the domination number of connected cubic graphs

    Sib. Èlektron. Mat. Izv., 6 (2009),  465–504
  6. Circular $(5,2)$-coloring of sparse graphs

    Sib. Èlektron. Mat. Izv., 5 (2008),  417–426
  7. Minimax degrees of quasiplane graphs without $4$-faces

    Sib. Èlektron. Mat. Izv., 4 (2007),  435–439
  8. Oriented 5-coloring of sparse plane graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006),  16–32
  9. Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces

    Mat. Zametki, 72:1 (2002),  35–37
  10. Acyclic $k$-strong coloring of maps on surfaces

    Mat. Zametki, 67:1 (2000),  36–45
  11. Acyclic coloring of 1-planar graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 6:4 (1999),  20–35
  12. The number of $q$-ary words with restrictions on the length of a maximal series

    Diskr. Mat., 10:1 (1998),  10–19
  13. A very short proof of Dirac's theorem on the number of edges in chromatically critical graphs

    Diskretn. Anal. Issled. Oper., 3:4 (1996),  28–34
  14. On the smallest independent dominating sets in graphs

    Sibirsk. Zh. Issled. Oper., 1:4 (1994),  7–21
  15. On the length of the path of a Chinese postman in homogeneous graphs

    Sibirsk. Zh. Issled. Oper., 1:3 (1994),  20–37
  16. A refinement of the Frank–Sebö–Tardos theorem and its applications

    Sibirsk. Zh. Issled. Oper., 1:3 (1994),  3–19
  17. Maximal capacity of the boundary of the Sperner family

    Dokl. Akad. Nauk SSSR, 310:3 (1990),  536–538
  18. An upper bound on the capacity of the boundary of an antichain in an $n$-dimensional cube

    Diskr. Mat., 1:3 (1989),  53–61
  19. Locally Hamiltonian graphs

    Mat. Zametki, 45:1 (1989),  36–42
  20. Upper bounds on the chromatic number of graphs

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 10 (1988),  204–226
  21. Polynomial algorithms with the estimates 3/4 and 5/ for the traveling salesman problem of the maximum

    Upravliaemie systemy, 1985, no. 26,  55–59
  22. Upper bounds on the chromatic number of a graph in terms of its degree, density and girth

    Dokl. Akad. Nauk SSSR, 235:3 (1977),  516–518

  23. In memory of Dmitry Germanovich Fon-Der-Flaass

    Sib. Èlektron. Mat. Izv., 7 (2010),  1–4


© Steklov Math. Inst. of RAS, 2025