RUS  ENG
Full version
PEOPLE

Sozutov Anatolii Il'ich

Publications in Math-Net.Ru

  1. On groups with Frobenius–Engel elements

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024),  213–222
  2. On the existence of $f$-local subgroups in a group with finite involution

    Bulletin of Irkutsk State University. Series Mathematics, 40 (2022),  112–117
  3. Sharply doubly transitive groups with saturation conditions

    J. Sib. Fed. Univ. Math. Phys., 15:5 (2022),  559–564
  4. On groups with involutions saturated by finite Frobenius groups

    Sibirsk. Mat. Zh., 63:6 (2022),  1256–1265
  5. On mixed normal subgroups of the group Lim($\mathbb{N}$)

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  187–192
  6. On periodic completely splittable groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:1 (2022),  239–246
  7. On periodic groups saturated with finite Frobenius groups

    Bulletin of Irkutsk State University. Series Mathematics, 35 (2021),  73–86
  8. Groups Saturated with Finite Frobenius Groups

    Mat. Zametki, 109:2 (2021),  264–275
  9. On groups with a strongly embedded unitary subgroup

    Sib. Èlektron. Mat. Izv., 17 (2020),  1128–1136
  10. On subgroups of group $\mathrm{Lim}(N)$

    Sib. Èlektron. Mat. Izv., 17 (2020),  208–217
  11. On the connection of some groups generated by 3-transpositions with Coxeter groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  234–243
  12. Groups with finite Engel element

    Algebra Logika, 58:3 (2019),  376–396
  13. Some periodic groups admitting a finite regular automorphism of even order

    Algebra Logika, 58:1 (2019),  22–34
  14. On Groups with an Isolated $2$-Subgroup

    Mat. Zametki, 105:3 (2019),  428–432
  15. Two observations on groups with engel elements

    Sibirsk. Mat. Zh., 60:6 (2019),  1411–1413
  16. On Periodic Groups with a Regular Automorphism of Order 4

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  201–209
  17. $KT$-fields and sharply triply transitive groups

    Algebra Logika, 57:2 (2018),  232–242
  18. 2-rank two periodic groups saturated with finite simple groups

    Sib. Èlektron. Mat. Izv., 15 (2018),  786–796
  19. On groups with a Frobenius element

    Sibirsk. Mat. Zh., 59:5 (2018),  1179–1191
  20. On Hilbert-Poincare series of associative nilalgebras generated by two nilelements

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  243–255
  21. On some properties of adjoint groups of associative nil algebras

    J. Sib. Fed. Univ. Math. Phys., 10:4 (2017),  503–508
  22. On sharply $2$-transitive groups with generalized finite elements

    Sibirsk. Mat. Zh., 58:5 (2017),  1144–1149
  23. Groups with the quasicyclic centralizer of a finite involution

    Sibirsk. Mat. Zh., 57:5 (2016),  1127–1130
  24. On Coxeter graphs of groups with symplectic 3-transpositions

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  251–258
  25. On graphs with vertices of two colors and groups with 3-transpositions

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  257–262
  26. Infinite groups of finite period

    Algebra Logika, 54:2 (2015),  243–251
  27. Local finiteness of periodic sharply triply transitive groups

    Algebra Logika, 54:1 (2015),  70–84
  28. On groups with Frobenius elements

    Sibirsk. Mat. Zh., 56:2 (2015),  436–443
  29. On groups with isolated involution

    Sibirsk. Mat. Zh., 55:4 (2014),  863–874
  30. On certain near-domains and sharply $2$-transitive groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  277–283
  31. Two questions in the Kourovka Notebook

    Algebra Logika, 52:5 (2013),  632–637
  32. About systems of generators of some groups with 3-transpositions

    Sib. Èlektron. Mat. Izv., 10 (2013),  285–301
  33. On the Shunkov groups acting freely on abelian groups

    Sibirsk. Mat. Zh., 54:1 (2013),  188–198
  34. On periodic groups acting freely on abelian groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  136–143
  35. A nonsimplicity criterion for groups

    Algebra Logika, 51:6 (2012),  772–782
  36. Groups with an almost regular involution

    Algebra Logika, 46:3 (2007),  360–368
  37. Groups with elementary Abelian centralizers of involutions

    Algebra Logika, 46:1 (2007),  75–82
  38. The $f$-local subgroups of the groups with a generalized finite element of order 2 or 4

    Sibirsk. Mat. Zh., 48:5 (2007),  1147–1154
  39. On groups with almost perfect involution

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:1 (2007),  183–190
  40. Associative Nil-Algebras and Golod Groups

    Algebra Logika, 45:2 (2006),  231–238
  41. On a Question in the Kourovka Notebook

    Mat. Zametki, 80:1 (2006),  154–155
  42. On the existence of $f$-local subgroups in a group

    Sibirsk. Mat. Zh., 47:4 (2006),  898–913
  43. Frobenius Pairs with Perfect Involutions

    Algebra Logika, 44:6 (2005),  751–762
  44. A Group with $H$-Frobenius Element of Even Order

    Algebra Logika, 44:1 (2005),  70–80
  45. Investigation of groups with finiteness conditions in Krasnoyarsk

    Uspekhi Mat. Nauk, 60:5(365) (2005),  3–46
  46. On Some Groups with Finite Involution Saturated with Finite Simple Groups

    Mat. Zametki, 72:3 (2002),  433–447
  47. Structure of Quasi-Layer-Finite Groups

    Mat. Zametki, 72:1 (2002),  118–130
  48. On the Structure of Locally Graded $\overline T$-Groups

    Mat. Zametki, 71:4 (2002),  633–636
  49. On Groups with Finite Involution and Locally Finite 2-Isolated Subgroup of Even Period

    Mat. Zametki, 69:6 (2001),  912–918
  50. Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution

    Mat. Zametki, 69:3 (2001),  443–453
  51. On some infinite groups with a strongly embedded subgroup

    Algebra Logika, 39:5 (2000),  602–617
  52. On infinite groups with a given strongly isolated 2-subgroup

    Mat. Zametki, 68:2 (2000),  272–285
  53. On a generalization of the Baer–Suzuki theorem

    Sibirsk. Mat. Zh., 41:3 (2000),  674–675
  54. Residually finite groups with nontrivial intersections of pairs of subgroups

    Sibirsk. Mat. Zh., 41:2 (2000),  437–441
  55. On groups with certain systems of $F$-subgroups

    Sibirsk. Mat. Zh., 39:1 (1998),  161–171
  56. On the existence of $f$-local subgroups in a group

    Algebra Logika, 36:5 (1997),  573–598
  57. On groups with a normal splitting component

    Sibirsk. Mat. Zh., 38:4 (1997),  897–914
  58. On groups with the class of Frobenius-abelian elements

    Algebra Logika, 34:5 (1995),  531–549
  59. On examples of associate nilalgebras

    Mat. Zametki, 57:3 (1995),  445–450
  60. Splittable groups with splitting component of prime index

    Mat. Zametki, 57:3 (1995),  377–385
  61. On the structure of the noninvariant factor in some Frobenius groups

    Sibirsk. Mat. Zh., 35:4 (1994),  893–901
  62. On the theory of groups with the minimality condition

    Mat. Zametki, 54:1 (1993),  71–77
  63. On lie algebras with monomial basis

    Sibirsk. Mat. Zh., 34:5 (1993),  188–201
  64. On groups of type $\Sigma_4$ generated by $3$-transpositions

    Sibirsk. Mat. Zh., 33:1 (1992),  140–149
  65. Nil radicals in groups

    Algebra Logika, 30:1 (1991),  102–105
  66. Infinite groups saturated by Frobenius subgroups. II

    Algebra Logika, 18:2 (1979),  206–223
  67. Infinite groups saturated by Frobenius subgroups

    Algebra Logika, 16:6 (1977),  711–735
  68. Groups with Frobenius pairs of conjugate elements

    Algebra Logika, 16:2 (1977),  204–212
  69. On a generalization of Frobenius' theorem to infinite groups

    Mat. Sb. (N.S.), 100(142):4(8) (1976),  495–506

  70. Vladimir Petrovich Shunkov (obituary)

    Uspekhi Mat. Nauk, 68:4(412) (2013),  177–178
  71. Letter to the Editorial Board

    Uspekhi Mat. Nauk, 61:2(368) (2006),  191


© Steklov Math. Inst. of RAS, 2025