RUS  ENG
Full version
PEOPLE

Chizhonkov Evgenii Vladimirovich

Publications in Math-Net.Ru

  1. On the numerical solution of relativistic Vlasov–Ampere equations

    Mat. Model., 37:3 (2025),  159–174
  2. Optimization of calculations in modeling the breaking of plasma oscillations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 8,  81–93
  3. On numerical simulation of plasma oscillations taking into account non-standard viscosity

    Num. Meth. Prog., 25:4 (2024),  427–440
  4. On errors in the PIC-method when modeling Langmuir oscillations

    Num. Meth. Prog., 25:1 (2024),  47–63
  5. Numerical simulation of oscillations in a cold but viscous plasma

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 4,  32–41
  6. Numerical solution of the Vlasov–Ampère equations

    Zh. Vychisl. Mat. Mat. Fiz., 64:7 (2024),  1268–1280
  7. On numerical simulation of traveling Langmuir waves in warm plasma

    Mat. Model., 35:11 (2023),  21–34
  8. On the numerical solution of one extended hyperbolic system

    Num. Meth. Prog., 24:2 (2023),  213–230
  9. Rusanov’s third-order accurate scheme for modeling plasma oscillations

    Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023),  864–878
  10. On the stabilization of nonlinear cylindrical oscillations in a plasma with a current

    Mat. Model., 34:12 (2022),  43–58
  11. Simulation of a cylindrical slow extraordinary wave in cold magnetoactive plasma

    Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022),  872–888
  12. On breaking of a slow extraordinary wave in a cold magnetoactive plasma

    Mat. Model., 33:6 (2021),  3–16
  13. Analytical and numerical solutions of one-dimensional cold plasma equations

    Zh. Vychisl. Mat. Mat. Fiz., 61:9 (2021),  1508–1527
  14. On the existence of a global solution of a hyperbolic problem

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  97–100
  15. Numerical simulation of a slow extraordinary wave in magnetoactive plasma

    Num. Meth. Prog., 21:4 (2020),  420–439
  16. On second-order accuracy schemes for modeling of plasma oscillations

    Num. Meth. Prog., 21:1 (2020),  115–128
  17. Application of the energy conservation law in the cold plasma model

    Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020),  503–519
  18. The effect of electron-ion collisions on the breaking of cylindrical plasma oscillations

    Mat. Model., 30:10 (2018),  86–106
  19. Numerical modeling of plasma oscillations with consideration of electron thermal motion

    Num. Meth. Prog., 19:2 (2018),  194–206
  20. Artificial boundary conditions for numerical modeling of electron oscillations in plasma

    Num. Meth. Prog., 18:1 (2017),  65–79
  21. Breaking of two-dimensional relativistic electron oscillations under small deviations from axial symmetry

    Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017),  1844–1859
  22. A difference scheme for plasma wakefield simulation

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1,  44–48
  23. The effect of ions dynamics on the breaking of plane electron oscillations

    Mat. Model., 27:12 (2015),  3–19
  24. Relativistic breaking effect of electron oscillations in a plasma slab

    Num. Meth. Prog., 15:3 (2014),  537–548
  25. Spatial modeling of breaking effects in nonlinear plasma oscillations

    Num. Meth. Prog., 14:3 (2013),  295–305
  26. A finite-difference scheme for computing axisymmetric plasma oscillations

    Num. Meth. Prog., 13:1 (2012),  1–13
  27. Iteration in a subspace for solving matrix games

    Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012),  1601–1613
  28. On the method of fictitious unknowns for the numerical solution of matrix games

    Num. Meth. Prog., 12:3 (2011),  338–347
  29. To the question of large-amplitude electron oscillations in a plasma slab

    Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011),  456–469
  30. Numerical modeling of axial solutions to some nonlinear problems

    Num. Meth. Prog., 11:3 (2010),  215–227
  31. Iterative solution of matrix games by the methods of grid variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010),  1367–1380
  32. A multi-level method for solving large-scale matrix games

    Num. Meth. Prog., 10:3 (2009),  327–339
  33. Numerical solution of some unstable problem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 5,  50–53
  34. Numerical solution to a stokes interface problem

    Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009),  111–122
  35. On modeling of nonrelativistic cylindrical oscillations in plasma

    Num. Meth. Prog., 9:1 (2008),  58–65
  36. On two methods of approximate projection onto a stable manifold

    Num. Meth. Prog., 8:2 (2007),  177–182
  37. Numerical modeling of dynamics of 3D nonlinear wakefields in hydrodynamic approach

    Num. Meth. Prog., 7:1 (2006),  17–22
  38. On projection operators for numerical stabilization

    Num. Meth. Prog., 5:1 (2004),  161–169
  39. Solution of irregular saddle point problems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 1,  17–20
  40. On the preconditioning of saddle problems by means of saddle operators

    Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004),  1523–1533
  41. On the solution of saddle problems by methods with model saddle operators on the upper layer

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 8,  19–27
  42. Improving the convergence of the Lanczos method in solving algebraic saddle point problems

    Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002),  504–513
  43. On generalized relaxation method for linear saddle point problems

    Mat. Model., 13:12 (2001),  107–114
  44. On solving an algebraic system of Stokes type under block diagonal preconditioning

    Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001),  549–557
  45. On the best constant in the inf-sup condition for elongated rectangular domains

    Mat. Zametki, 67:3 (2000),  387–396
  46. On the Arrow–Hurwicz algorithm with variable iterative parameters

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5,  65–72
  47. Some results on the convergence of the Arrow–Hurwicz algorithm for Stokes-type algebraic systems

    Zh. Vychisl. Mat. Mat. Fiz., 39:3 (1999),  523–533
  48. Numerical simulation of the thermal self-focusing process in plazma

    Fundam. Prikl. Mat., 2:3 (1996),  789–801
  49. On the convergence of the artificial compressibility method

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2,  13–20
  50. On some finite-difference approximations of Stokes problem

    Fundam. Prikl. Mat., 1:3 (1995),  573–580
  51. Numerical modelling of dynamic wave beam self-focusing in plasmas

    Mat. Model., 7:9 (1995),  65–71
  52. On the optimization of algorithms for solving the Stokes problem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6,  93–96
  53. Methods for the simultaneous solution of the equations of gas dynamics and the kinetics of multiply-charged plasma

    Zh. Vychisl. Mat. Mat. Fiz., 30:9 (1990),  1381–1393
  54. A system of equations of magnetohydrodynamics type

    Dokl. Akad. Nauk SSSR, 278:5 (1984),  1074–1077


© Steklov Math. Inst. of RAS, 2025