RUS  ENG
Full version
PEOPLE

Beletskii Vladimir Vasil'evich

Publications in Math-Net.Ru

  1. Libration Points of the Generalized Restricted Circular Problem of Three Bodies in the case of imaginary distance between attracting centers

    Nelin. Dinam., 8:5 (2012),  931–940
  2. Coplanar libration points in the generalized restricted circular problem of three bodies

    Nelin. Dinam., 7:3 (2011),  569–576
  3. On three classes of simply periodic trajectories in the problem of the motion of a rigid body about a fixed point in the case $À=B=0{,}5C$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 6,  53–57
  4. Taking into account the shift of the center of mass of a gyrostat with an elastic rod in the analysis of the stability of the family of its equilibria

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 1,  42–47
  5. On periodic motions of dynamic billiards

    Keldysh Institute preprints, 2003, 014, 27 pp.
  6. Influence of the atmosphere density gradient on rotation and orientation of a dumbbell-shaped satellite

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 5,  35–38
  7. Stabilization of Heliosynchronous Orbits of an Earth's Artificial Satellite by Solar Pressure

    Keldysh Institute preprints, 1997, 054
  8. Free manifolds of dynamic billiards

    Regul. Chaotic Dyn., 2:3-4 (1997),  62–71
  9. The aerodynamics Influence on the Relative Motion of the Orbital System of the Two Connected Bodies. Part 1. Regular Motions

    Keldysh Institute preprints, 1996, 040
  10. The aerodynamics Influence on the Relative Motion of the Orbital System of the Two Connected Bodies. Part 1. Regular Motions

    Keldysh Institute preprints, 1996, 038
  11. Hill's Problem as a Dynamical Billiard

    Regul. Chaotic Dyn., 1:2 (1996),  47–58
  12. Connected Bodies in the Orbit as Dynamic Billiard

    Regul. Chaotic Dyn., 1:1 (1996),  87–103
  13. Connected Bodies on the Orbit as Dynamic Billiard

    Keldysh Institute preprints, 1995, 007
  14. Influence of atmospheric density gradient on aerodynamic stabilization

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 2,  70–73
  15. Some model problems in the dynamics of a hopping apparatus

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 3,  69–72
  16. To the tidal evolution of protoplanetary rotation

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 4,  64–68
  17. Extremal properties of resonant motions

    Dokl. Akad. Nauk SSSR, 251:1 (1980),  58–62
  18. Extremum properties of resonance motions

    Dokl. Akad. Nauk SSSR, 231:4 (1976),  829–832
  19. The stability of fast rotations of axisymmetric satellite in the gravitational field

    Dokl. Akad. Nauk SSSR, 203:1 (1972),  50–53
  20. Integrability of equations of motion of a solid around a fixed point under the action of a central Newtonian field of force

    Dokl. Akad. Nauk SSSR, 113:2 (1957),  287–290

  21. Dmitrii Evgen'evich Okhotsimskii (obituary)

    Uspekhi Mat. Nauk, 61:3(369) (2006),  157–160


© Steklov Math. Inst. of RAS, 2025