RUS  ENG
Full version
PEOPLE

Nesterenko Vladimir Vital'evich

Publications in Math-Net.Ru

  1. Macroscopic approach to the Casimir friction force

    Pis'ma v Zh. Èksper. Teoret. Fiz., 99:10 (2014),  669–672
  2. Parabolic approximation to the theory of transverse vibrations of rods and beams

    Prikl. Mekh. Tekh. Fiz., 35:2 (1994),  151–154
  3. Relativistic particle with action that depends on the torsion of the world trajectory

    TMF, 86:2 (1991),  244–256
  4. Calculation of static interquark potential in a string model in a timelike gauge

    TMF, 71:2 (1987),  238–248
  5. Derivation of an expression for a Hamiltonian functional integral in theories with first and second class constraints

    TMF, 69:1 (1986),  115–127
  6. Superstrings: a new approach to a unified theory of fundamental interactions

    UFN, 150:4 (1986),  489–524
  7. Some properties of constraints in theories with degenerate Lagrangians

    TMF, 64:1 (1985),  82–91
  8. Functional integral for systems with constraints that depend explicitly on the time

    TMF, 63:1 (1985),  88–96
  9. Reduction in the model of a relativistic string for arbitrary dimension of Minkowski space

    TMF, 59:2 (1984),  209–219
  10. Nonlinear $\sigma$ model for the Dodd–Bullough equation

    TMF, 58:2 (1984),  192–199
  11. Bäcklund transformation for the Liouville equation and gauge conditions in the theory of a relativistic string

    TMF, 56:2 (1983),  180–191
  12. General solutions of nonlinear equations in the theory of minimal surfaces

    TMF, 52:1 (1982),  3–13
  13. The present status of quantum field theory

    UFN, 136:3 (1982),  542–546
  14. Generalization of the model of a relativistic string in a geometrical approach

    TMF, 45:3 (1980),  365–376
  15. Solitons in some geometrical field theories

    TMF, 40:1 (1979),  15–27
  16. Covariant formalism for a relativistic string in a constant homogeneous electromagnetic field

    TMF, 32:3 (1977),  336–343
  17. Relativistic string in a constant homogeneous electromagnetic field

    TMF, 32:2 (1977),  176–186
  18. Relativistic string with massive ends

    TMF, 31:3 (1977),  291–299
  19. Bremsstrahlung approximation for inclusive processes

    TMF, 27:1 (1976),  48–54
  20. High-energy scattering of composite particles in the functional approach

    TMF, 24:2 (1975),  195–205
  21. Eikonal approximation for high-energy inclusive processes

    TMF, 23:1 (1975),  22–31
  22. Approximate solutions in the model $\mathscr L_{\mathrm{int}}=h^2\psi^2\varphi^2$ and equations for Green's functions on paths

    TMF, 19:1 (1974),  47–58
  23. Exchange of hard and soft quanta in high-energy scattering

    TMF, 16:3 (1973),  349–354
  24. Eikonal approximation for deep inelastic scattering in scalar electrodynamics

    TMF, 16:1 (1973),  52–60
  25. Investigation by the functional method of the high-energy behavior of the “meson-nucleon” scattering amplitude in a scalar model

    TMF, 14:1 (1973),  27–35
  26. Eikonal representation for a scattering amplitude containing virtual Veneziano blocks

    TMF, 13:1 (1972),  83–87
  27. Functional integration and Regge-eikonal representation of the scattering amplitude

    TMF, 10:2 (1972),  196–203
  28. Eikonalization of the scattering amplitude in some field theory models at high energies

    TMF, 9:3 (1971),  343–354
  29. Approximation of the propagators of virtual particles and the high-energy behavior of Feynman diagrams

    TMF, 4:3 (1970),  293–300


© Steklov Math. Inst. of RAS, 2025