RUS  ENG
Full version
PEOPLE

Gordin Mikhail Iosifovich

Publications in Math-Net.Ru

  1. Circular unitary ensembles: parametric models and their asymptotic maximum likelihood estimates

    Zap. Nauchn. Sem. POMI, 441 (2015),  163–186
  2. Poisson limit for two-dimensional toral automorphisms driven by continued fractions

    Zap. Nauchn. Sem. POMI, 408 (2012),  131–153
  3. Homoclinic processes and invariant measures for hyperbolic toral automorphisms

    Zap. Nauchn. Sem. POMI, 368 (2009),  122–129
  4. Martingale-coboundary representation for a class of stationary random fields

    Zap. Nauchn. Sem. POMI, 364 (2009),  88–108
  5. Limit correlation functions at zero for fixed trace random matrix ensembles

    Zap. Nauchn. Sem. POMI, 341 (2007),  68–80
  6. A note on the martingale approximation method in proving the central limit theorem for stationary random sequences

    Zap. Nauchn. Sem. POMI, 311 (2004),  124–132
  7. Limiting distributions of theta series on Siegel half-spaces

    Algebra i Analiz, 15:1 (2003),  118–147
  8. Double extensions of dynamical systems and a construction of mixing filtrations. II. Quasihyperbolic toral automorphisms

    Zap. Nauchn. Sem. POMI, 260 (1999),  103–118
  9. Double extensions of dynamical systems and a construction of mixing filtrations

    Zap. Nauchn. Sem. POMI, 244 (1997),  61–72
  10. Asymptotically Gaussian distribution for random perturbations of rotations of the circle

    Zap. Nauchn. Sem. POMI, 240 (1997),  78–81
  11. Homoclinic sums criterion for vanishing of spectral density

    Zap. Nauchn. Sem. POMI, 228 (1996),  94–110
  12. Some remarks on homoclinic groups of hyperbolic toral automorphisms

    Zap. Nauchn. Sem. POMI, 223 (1995),  140–147
  13. Extensions of dynamical systems and martingale approximation method

    Zap. Nauchn. Sem. POMI, 216 (1994),  10–19
  14. Homoclinical version of CLT

    Zap. Nauchn. Sem. LOMI, 184 (1990),  80–91
  15. The central limit theorem for stationary Markov processes

    Dokl. Akad. Nauk SSSR, 239:4 (1978),  766–767
  16. Exponentially fast mixing

    Dokl. Akad. Nauk SSSR, 196:6 (1971),  1255–1258
  17. On the behaviour of the variances of sums of random variables that form a stationary process

    Teor. Veroyatnost. i Primenen., 16:3 (1971),  484–494
  18. The central limit theorem for stationary processes

    Dokl. Akad. Nauk SSSR, 188:4 (1969),  739–741
  19. Random processes produced by number-theoretic endomorphisms

    Dokl. Akad. Nauk SSSR, 182:5 (1968),  1004–1006

  20. Anatolii Moiseevich Vershik (on his 80th birthday)

    Uspekhi Mat. Nauk, 69:1(415) (2014),  173–186


© Steklov Math. Inst. of RAS, 2025