RUS  ENG
Full version
PEOPLE

Ashurov Ravshan Radzhabovich

Publications in Math-Net.Ru

  1. Inverse problem for subdiffusion equation with fractional Caputo derivative

    Ufimsk. Mat. Zh., 16:1 (2024),  111–125
  2. Direct and inverse problems for the Hilfer fractional differential equation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:2 (2024),  167–181
  3. Makhmud Salakhitdinovich Salakhitdinov

    Chelyab. Fiz.-Mat. Zh., 8:4 (2023),  463–468
  4. On the inverse problem of the Bitsadze–Samarskii type for a fractional parabolic equation

    Probl. Anal. Issues Anal., 12(30):3 (2023),  20–40
  5. Determination of fractional order and source term in subdiffusion equations

    Eurasian Math. J., 13:1 (2022),  19–31
  6. 35M12Boundary value problem for a mixed-type equation with a higher order elliptic operator

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 39:2 (2022),  7–19
  7. Generalized localization and summability almost everywhere of multiple Fourier series and integrals

    CMFD, 67:4 (2021),  634–653
  8. Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation

    Mat. Zametki, 110:6 (2021),  824–836
  9. Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes

    Mat. Zametki, 109:2 (2021),  163–169
  10. On a semi-nonlocal boundary value problem for the three-dimensional Tricomi equation of an unbounded prismatic domain

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 35:2 (2021),  8–16
  11. On the unique solvability of a seminonlocal boundary value problem for the loaded Ñhaplygin equation in a rectangle

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 31:2 (2020),  8–17
  12. Initial-boundary value problem for hyperbolic equations with an arbitrary order elliptic operator

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 30:1 (2020),  8–19
  13. On one linear inverse problem for multidimensional equation of the mixed type of the first kind and of the second order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 6,  11–22
  14. Generalized Localization Principle for Continuous Wavelet Decompositions

    Mat. Zametki, 106:6 (2019),  803–810
  15. On Eigenfunction Expansions Associated with the Schrödinger Operator with a Singular Potential

    Differ. Uravn., 41:2 (2005),  241–249
  16. Bi-orthogonal expansions of a nonselfadjoint Schrödinger operator

    Differ. Uravn., 27:1 (1991),  156–158
  17. Summation of multiple trigonometric Fourier series

    Mat. Zametki, 49:6 (1991),  12–18
  18. Zeros of eigenfunctions of the Schrödinger operator with a singular potential

    Differ. Uravn., 26:11 (1990),  2000–2002
  19. Decomposability of continuous functions from Nikol'skii classes into multiple Fourier integrals

    Mat. Zametki, 47:2 (1990),  3–7
  20. An asymptotic estimate in $L_2$ for the Riesz means of the spectral function of an elliptic operator

    Differ. Uravn., 25:1 (1989),  3–14
  21. Multiple series and Fourier integrals

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 42 (1989),  7–104
  22. Localization conditions of square partial sums of a multiple trigonometric Fourier series in the classes of S. M. Nikol'skii

    Mat. Zametki, 46:4 (1989),  3–7
  23. Asymptotic behavior of a spectral function of the Schrödinger operator with potential $q\in L_2(R^3)$

    Differ. Uravn., 23:1 (1987),  169–172
  24. Conditions for the localization of multiple trigonometric Fourier series

    Dokl. Akad. Nauk SSSR, 282:4 (1985),  777–780
  25. Asymptotic estimation of the spectral function of an elliptic operator

    Dokl. Akad. Nauk SSSR, 276:2 (1984),  265–267
  26. The spectral function of an elliptic differential operator with constant principal part

    Dokl. Akad. Nauk SSSR, 274:6 (1984),  1289–1291
  27. Localization of spectral expansions corresponding to elliptic operators with constant coefficients

    Differ. Uravn., 20:1 (1984),  3–7
  28. Summability almost everywhere of Fourier series in $L_p$ with respect to eigenfunctions

    Mat. Zametki, 34:6 (1983),  837–843
  29. Localization conditions of spectral expansions, corresponding to elliptic operators with constant coefficients

    Mat. Zametki, 33:6 (1983),  847–856
  30. The asymptotic behavior of spectral functions of some elliptic operators

    Differ. Uravn., 18:4 (1982),  621–625
  31. On conditions for localization of spectral resolutions corresponding to elliptic operators with constant coefficients

    Dokl. Akad. Nauk SSSR, 257:6 (1981),  1292–1294
  32. Asymptotics of the spectral function of an elliptic operator with constant coefficients

    Dokl. Akad. Nauk SSSR, 256:3 (1981),  528–530
  33. Nonexistence of localization of spectral decompositions associated with elliptic operators

    Mat. Zametki, 30:4 (1981),  535–542
  34. Divergence of spectral expansions connected with elliptic operators

    Mat. Zametki, 30:2 (1981),  225–235
  35. Conditions for riesz means of spectral resolutions to be a basis in $L_p(\mathbf R^n)$

    Mat. Zametki, 29:5 (1981),  673–684

  36. Batirkhan Khudaibergenovich Turmetov (to the 60th anniversary)

    Chelyab. Fiz.-Mat. Zh., 6:1 (2021),  5–8


© Steklov Math. Inst. of RAS, 2024