|
|
Publications in Math-Net.Ru
-
Exact and approximate solutions to the quasilinear parabolic system “predator-prey” with zero fronts
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 240 (2025), 19–28
-
On one class of exact solutions of the multidimensional nonlinear heat equation with a zero front
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 234 (2024), 59–66
-
Diffusion wave initiation problem for a nonlinear parabolic system in the case of spherical and cylindrical symmetry
Prikl. Mekh. Tekh. Fiz., 65:4 (2024), 97–108
-
Solution to a two-dimensional nonlinear parabolic heat equation subject to a boundary condition specified on a moving manifold
Zh. Vychisl. Mat. Mat. Fiz., 64:2 (2024), 283–303
-
Solution to a two-dimensional nonlinear heat equation using null field method
Computer Research and Modeling, 15:6 (2023), 1449–1467
-
On some zero-front solutions of an evolution parabolic system
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224 (2023), 80–88
-
The Problem of Diffusion Wave Initiation for a Nonlinear Second-Order Parabolic System
Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023), 67–86
-
Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions
Computer Research and Modeling, 14:1 (2022), 9–22
-
Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213 (2022), 54–62
-
Solutions to a nonlinear degenerating reaction–diffusion system of the type of diffusion waves with two fronts
Prikl. Mekh. Tekh. Fiz., 63:6 (2022), 104–115
-
On solutions of the traveling wave type for the nonlinear heat equation
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 196 (2021), 36–43
-
Exact and approximate solutions to the degenerated reaction–diffusion system
Prikl. Mekh. Tekh. Fiz., 62:4 (2021), 169–180
-
Exact and approximate solutions of a problem with a special feature for a convection-diffusion equation
Prikl. Mekh. Tekh. Fiz., 62:1 (2021), 22–31
-
Construction of solutions to the boundary value problem with singularity for a nonlinear parabolic system
Sib. Zh. Ind. Mat., 24:4 (2021), 64–78
-
Approximate and exact solutions to the singular nonlinear heat equation with a common type of nonlinearity
Bulletin of Irkutsk State University. Series Mathematics, 34 (2020), 18–34
-
On the construction of solutions to a problem with a free boundary for the non-linear heat equation
J. Sib. Fed. Univ. Math. Phys., 13:6 (2020), 694–707
-
Solution of the problem of initiating the heat wave for a nonlinear heat conduction equation using the boundary element method
Zh. Vychisl. Mat. Mat. Fiz., 59:6 (2019), 1047–1062
-
On a three-dimensional heat wave generated by boundary condition specified on a time-dependent manifold
Bulletin of Irkutsk State University. Series Mathematics, 26 (2018), 16–34
-
Solution of a two-dimensionel problem on the motion of a heat wave front with the use of power series and the boundary element method
Bulletin of Irkutsk State University. Series Mathematics, 18 (2016), 21–37
-
Numerical and analytical study of processes described by the nonlinear heat equation
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:4 (2015), 42–48
-
On a degenerate boundary value problem for the porous medium equation in spherical coordinates
Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 119–129
-
Boundary element method and power series method for one-dimensional non-linear filtration problems
Bulletin of Irkutsk State University. Series Mathematics, 5:2 (2012), 2–17
-
Применение аналитического интегрирования в методе граничных элементов для анализа многосвязных упругих областей
Matem. Mod. Kraev. Zadachi, 1 (2010), 384–387
-
Application of the modified boundary element method for solving elasto-plastic problems
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(17) (2008), 118–125
-
The analytical integration of influense functions for solving elastic and potential problems by the boundary element method
Mat. Model., 19:2 (2007), 87–104
-
Stress calculation by the boundary element method using analytical integration
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(15) (2007), 79–84
-
Модификация метода граничных элементов для моделирования трехмерных упругих задач
Matem. Mod. Kraev. Zadachi, 1 (2006), 231–234
-
К аналитическому вычислению интегралов в численно-аналитическом методе решения задач деформирования
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 43 (2006), 91–98
-
Решение нестационарных температурных и термомеханических задач методом разделения переменных в вариационной постановке
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 42 (2006), 72–75
-
Математическое моделирование краевых задач упругости и диффузии с помощью параллельных алгоритмов
Matem. Mod. Kraev. Zadachi, 1 (2005), 287–290
-
Решение двумерных и трёхмерных задач теории упругости с использованием параллельных алгоритмов вычислений
Matem. Mod. Kraev. Zadachi, 1 (2004), 237–242
-
Convergence studying of numerical-analytic method for solving elasticity, heat-conduction and diffusion problems
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 30 (2004), 55–62
-
Solution of dynamic plasticity problems by using of the variables separation method based on the variational formulation
Mat. Model., 12:7 (2000), 36–40
© , 2025