RUS  ENG
Full version
PEOPLE

Pogorelov Boris Aleksandrovich

Publications in Math-Net.Ru

  1. On subgroups of the affine group of the Galois ring of even characteristic

    Diskr. Mat., 36:4 (2024),  13–27
  2. Perfect diffusion of partitions of finite Abelian groups

    Mat. Vopr. Kriptogr., 15:4 (2024),  61–90
  3. On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  16–19
  4. Multipermutations on the Cartesian product of groups and their properties

    Mat. Vopr. Kriptogr., 14:4 (2023),  111–142
  5. On group properties of classes Source-Heavy and Target-Heavy Feistel block ciphers with round functions linear dependent on round keys parts

    Mat. Vopr. Kriptogr., 14:3 (2023),  127–155
  6. Multipermutations and perfect diffusion of partitions

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  8–11
  7. Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups

    Diskr. Mat., 34:2 (2022),  50–66
  8. Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions

    Diskr. Mat., 34:1 (2022),  103–125
  9. Generalized quasi-Hadamard transformations on finite groups

    Mat. Vopr. Kriptogr., 13:4 (2022),  97–124
  10. The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$

    Mat. Vopr. Kriptogr., 13:3 (2022),  107–130
  11. Diffusion properties of generalized quasi-Hadamard transformations on finite Abelian groups

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  14–17
  12. Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$

    Mat. Vopr. Kriptogr., 12:4 (2021),  65–85
  13. On ARX-like ciphers based on different codings of $2$-groups with a cyclic subgroup of index $2$

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  100–104
  14. Nonabelian key addition groups and $\otimes _{\mathbf{W}}$-markovian property of block ciphers

    Mat. Vopr. Kriptogr., 11:4 (2020),  107–131
  15. Characterization of mappings by the nonisometricity property

    Mat. Vopr. Kriptogr., 10:4 (2019),  77–116
  16. $\otimes_{\mathbf{W}}$-markovianity of XSL-block ciphers connected with properties of their round functions

    Mat. Vopr. Kriptogr., 10:1 (2019),  115–142
  17. On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index $2$

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  27–29
  18. Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  24–27
  19. Classification of distance-transitive orbital graphs of overgroups of the Jevons group

    Diskr. Mat., 30:4 (2018),  66–87
  20. Permutation homomorphisms of block ciphers and ${\otimes _{\mathbf{W}}}$-Markovian property

    Mat. Vopr. Kriptogr., 9:3 (2018),  109–126
  21. The permutation group insight on the diffusion property of linear mappings

    Mat. Vopr. Kriptogr., 9:2 (2018),  47–58
  22. On nonabelian key addition groups and markovian block ciphers

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  79–81
  23. The influence of linear mapping reducibility on the choice of round constants

    Mat. Vopr. Kriptogr., 8:2 (2017),  51–64
  24. Partitions on bigrams and Markov property of block ciphers

    Mat. Vopr. Kriptogr., 8:1 (2017),  107–142
  25. On the anisometric index of a transformation

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  25–27
  26. On groups containing the additive group of the residue ring or the vector space

    Diskr. Mat., 28:4 (2016),  100–121
  27. An attack on $\mathrm{6}$ rounds of Khazad

    Mat. Vopr. Kriptogr., 7:2 (2016),  35–46
  28. On the classification of distance-transitive orbital graphs of overgroups of the Jevons group

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  16–18
  29. On groups generated by mixed type permutations and key addition groups

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  14–16
  30. Orbital derivatives over subgroups and their combinatorial and group-theoretic properties

    Diskr. Mat., 27:4 (2015),  94–119
  31. Overgroups of order ${2^n}$ additive regular groups of a residue ring and of a vector space

    Diskr. Mat., 27:3 (2015),  74–94
  32. Orbital derivatives on the residue ring. Part II. Probabilistic and combinatorial properties

    Mat. Vopr. Kriptogr., 6:1 (2015),  117–133
  33. $\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  69–71
  34. $\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  17–19
  35. Properties of the group generated by translation groups of the vector space and the residue ring

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  15–16
  36. On the distance from permutations to the union of all imprimitive groups with identical parameters of imprimitivity systems

    Diskr. Mat., 26:1 (2014),  103–117
  37. Orbital derivatives on residue rings. Part I. General properties

    Mat. Vopr. Kriptogr., 5:4 (2014),  99–127
  38. On generalizations of Markov's approach to research of block ciphers

    Prikl. Diskr. Mat. Suppl., 2014, no. 7,  51–52
  39. On the distance from permutations to imprimitive groups for a fixed system of imprimitivity

    Diskr. Mat., 25:3 (2013),  78–95
  40. Combinatorial characterization of XL-layers

    Mat. Vopr. Kriptogr., 4:3 (2013),  99–129
  41. Factor structures of transformations

    Mat. Vopr. Kriptogr., 3:3 (2012),  81–104
  42. Natural metrics and their properties. P. 2. Hamming-type metrics

    Mat. Vopr. Kriptogr., 3:1 (2012),  71–95
  43. On combinatorial properties of the group generated by $XL$ layers

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  22–23
  44. Natural metrics and their properties. P. 1. Submetrics and overmetrics

    Mat. Vopr. Kriptogr., 2:4 (2011),  49–74
  45. On approximation of permutations by imprimitive groups

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  17–18
  46. Properties of graphs of orbitals for overgroups of the Jevons group

    Mat. Vopr. Kriptogr., 1:1 (2010),  55–83
  47. Hamming submetrics and their isometry groups

    Tr. Diskr. Mat., 11:2 (2008),  147–191
  48. Submetrics of a Hamming metric and trasforms which disseminate corruptions with a given multiplicity

    Tr. Diskr. Mat., 10 (2007),  202–238
  49. Submetrics of the Hamming metric and the theorem of A. A. Markov

    Tr. Diskr. Mat., 9 (2006),  190–219
  50. Permutation groups. I. (A survey for the period 1981–1995)

    Tr. Diskr. Mat., 2 (1998),  237–281
  51. Primitive groups of permutations of small degrees. II

    Algebra Logika, 19:4 (1980),  423–457
  52. Primitive groups of permutations of small degrees. I

    Algebra Logika, 19:3 (1980),  348–379
  53. Primitive permutation groups containing a $2^m$-cycle

    Algebra Logika, 19:2 (1980),  236–247
  54. Maximal subgroups of symmetric groups defined on projective spaces over finite fields

    Mat. Zametki, 16:1 (1974),  91–100

  55. To the memory of Igor Aleksandrovich Kruglov

    Mat. Vopr. Kriptogr., 11:4 (2020),  5–6
  56. Валентин Федорович Колчин (1934–2016)

    Diskr. Mat., 28:4 (2016),  3–5
  57. V. L. Kurakin (13.05.1966 – 14.08.2010)

    Mat. Vopr. Kriptogr., 2:3 (2011),  111–112
  58. Yurii Vasil'evich Prokhorov (on the occasion of his eightieth birthday)

    Diskr. Mat., 22:1 (2010),  3–4
  59. Vladimir Yakovlevich Kozlov (on the occasion of his ninetieth birthday)

    Diskr. Mat., 16:2 (2004),  3–6
  60. To the 90th birthday of Kozlov V. Ya.

    Teor. Veroyatnost. i Primenen., 49:3 (2004),  615–617


© Steklov Math. Inst. of RAS, 2025