|
|
Publications in Math-Net.Ru
-
On subgroups of the affine group of the Galois ring of even characteristic
Diskr. Mat., 36:4 (2024), 13–27
-
Perfect diffusion of partitions of finite Abelian groups
Mat. Vopr. Kriptogr., 15:4 (2024), 61–90
-
On permutations perfectly diffusing classes of partitions of $V_n^l(2^m)$
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 16–19
-
Multipermutations on the Cartesian product of groups and their properties
Mat. Vopr. Kriptogr., 14:4 (2023), 111–142
-
On group properties of classes Source-Heavy and Target-Heavy Feistel block ciphers with round functions linear dependent on round keys parts
Mat. Vopr. Kriptogr., 14:3 (2023), 127–155
-
Multipermutations and perfect diffusion of partitions
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 8–11
-
Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups
Diskr. Mat., 34:2 (2022), 50–66
-
Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions
Diskr. Mat., 34:1 (2022), 103–125
-
Generalized quasi-Hadamard transformations on finite groups
Mat. Vopr. Kriptogr., 13:4 (2022), 97–124
-
The simplest overgroups of regular permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$
Mat. Vopr. Kriptogr., 13:3 (2022), 107–130
-
Diffusion properties of generalized quasi-Hadamard transformations on finite Abelian groups
Prikl. Diskr. Mat. Suppl., 2022, no. 15, 14–17
-
Properties of permutation representations of nonabelian $2$-groups with a cyclic subgroup of index $2$
Mat. Vopr. Kriptogr., 12:4 (2021), 65–85
-
On ARX-like ciphers based on different codings of $2$-groups with a cyclic subgroup of index $2$
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 100–104
-
Nonabelian key addition groups and $\otimes _{\mathbf{W}}$-markovian property of block ciphers
Mat. Vopr. Kriptogr., 11:4 (2020), 107–131
-
Characterization of mappings by the nonisometricity property
Mat. Vopr. Kriptogr., 10:4 (2019), 77–116
-
$\otimes_{\mathbf{W}}$-markovianity of XSL-block ciphers connected with properties of their round functions
Mat. Vopr. Kriptogr., 10:1 (2019), 115–142
-
On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index $2$
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 27–29
-
Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 24–27
-
Classification of distance-transitive orbital graphs of overgroups of the Jevons group
Diskr. Mat., 30:4 (2018), 66–87
-
Permutation homomorphisms of block ciphers and ${\otimes _{\mathbf{W}}}$-Markovian property
Mat. Vopr. Kriptogr., 9:3 (2018), 109–126
-
The permutation group insight on the diffusion property of linear mappings
Mat. Vopr. Kriptogr., 9:2 (2018), 47–58
-
On nonabelian key addition groups and markovian block ciphers
Prikl. Diskr. Mat. Suppl., 2018, no. 11, 79–81
-
The influence of linear mapping reducibility on the choice of round constants
Mat. Vopr. Kriptogr., 8:2 (2017), 51–64
-
Partitions on bigrams and Markov property of block ciphers
Mat. Vopr. Kriptogr., 8:1 (2017), 107–142
-
On the anisometric index of a transformation
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 25–27
-
On groups containing the additive group of the residue ring or the vector space
Diskr. Mat., 28:4 (2016), 100–121
-
An attack on $\mathrm{6}$ rounds of Khazad
Mat. Vopr. Kriptogr., 7:2 (2016), 35–46
-
On the classification of distance-transitive orbital graphs of overgroups of the Jevons group
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 16–18
-
On groups generated by mixed type permutations and key addition groups
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 14–16
-
Orbital derivatives over subgroups and their combinatorial and group-theoretic properties
Diskr. Mat., 27:4 (2015), 94–119
-
Overgroups of order ${2^n}$ additive regular groups of a residue ring and of a vector space
Diskr. Mat., 27:3 (2015), 74–94
-
Orbital derivatives on the residue ring. Part II. Probabilistic and combinatorial properties
Mat. Vopr. Kriptogr., 6:1 (2015), 117–133
-
$\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 69–71
-
$\otimes_{\mathbf W,\mathrm{ch}}$-markovian transformations
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 17–19
-
Properties of the group generated by translation groups of the vector space and the residue ring
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 15–16
-
On the distance from permutations to the union of all imprimitive groups with identical parameters of imprimitivity systems
Diskr. Mat., 26:1 (2014), 103–117
-
Orbital derivatives on residue rings. Part I. General properties
Mat. Vopr. Kriptogr., 5:4 (2014), 99–127
-
On generalizations of Markov's approach to research of block ciphers
Prikl. Diskr. Mat. Suppl., 2014, no. 7, 51–52
-
On the distance from permutations to imprimitive groups for a fixed system of imprimitivity
Diskr. Mat., 25:3 (2013), 78–95
-
Combinatorial characterization of XL-layers
Mat. Vopr. Kriptogr., 4:3 (2013), 99–129
-
Factor structures of transformations
Mat. Vopr. Kriptogr., 3:3 (2012), 81–104
-
Natural metrics and their properties. P. 2. Hamming-type metrics
Mat. Vopr. Kriptogr., 3:1 (2012), 71–95
-
On combinatorial properties of the group generated by $XL$ layers
Prikl. Diskr. Mat. Suppl., 2012, no. 5, 22–23
-
Natural metrics and their properties. P. 1. Submetrics and overmetrics
Mat. Vopr. Kriptogr., 2:4 (2011), 49–74
-
On approximation of permutations by imprimitive groups
Prikl. Diskr. Mat., 2011, no. supplement № 4, 17–18
-
Properties of graphs of orbitals for overgroups of the Jevons group
Mat. Vopr. Kriptogr., 1:1 (2010), 55–83
-
Hamming submetrics and their isometry groups
Tr. Diskr. Mat., 11:2 (2008), 147–191
-
Submetrics of a Hamming metric and trasforms which disseminate corruptions with a given multiplicity
Tr. Diskr. Mat., 10 (2007), 202–238
-
Submetrics of the Hamming metric and the theorem of A. A. Markov
Tr. Diskr. Mat., 9 (2006), 190–219
-
Permutation groups. I. (A survey for the period 1981–1995)
Tr. Diskr. Mat., 2 (1998), 237–281
-
Primitive groups of permutations of small degrees. II
Algebra Logika, 19:4 (1980), 423–457
-
Primitive groups of permutations of small degrees. I
Algebra Logika, 19:3 (1980), 348–379
-
Primitive permutation groups containing a $2^m$-cycle
Algebra Logika, 19:2 (1980), 236–247
-
Maximal subgroups of symmetric groups defined on projective spaces over finite fields
Mat. Zametki, 16:1 (1974), 91–100
-
To the memory of Igor Aleksandrovich Kruglov
Mat. Vopr. Kriptogr., 11:4 (2020), 5–6
-
Валентин Федорович Колчин (1934–2016)
Diskr. Mat., 28:4 (2016), 3–5
-
V. L. Kurakin (13.05.1966 – 14.08.2010)
Mat. Vopr. Kriptogr., 2:3 (2011), 111–112
-
Yurii Vasil'evich Prokhorov (on the occasion of his eightieth birthday)
Diskr. Mat., 22:1 (2010), 3–4
-
Vladimir Yakovlevich Kozlov (on the occasion of his ninetieth birthday)
Diskr. Mat., 16:2 (2004), 3–6
-
To the 90th birthday of Kozlov V. Ya.
Teor. Veroyatnost. i Primenen., 49:3 (2004), 615–617
© , 2025