RUS  ENG
Full version
PEOPLE

Ivanova Anna Olegovna

Publications in Math-Net.Ru

  1. Describing edges in normal plane maps having no adjacent $3$-faces

    Sib. Èlektron. Mat. Izv., 21:1 (2024),  495–500
  2. Light $3$-paths in $3$-polytopes without adjacent triangles

    Sibirsk. Mat. Zh., 65:2 (2024),  249–257
  3. Combinatorial structure of faces in triangulations on surfaces

    Sibirsk. Mat. Zh., 63:4 (2022),  796–804
  4. Tight description of faces in torus triangulations with minimum degree 5

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1475–1481
  5. All tight descriptions of major $3$-paths in $3$-polytopes without $3$-vertices

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  456–463
  6. A tight description of $3$-polytopes by their major $3$-paths

    Sibirsk. Mat. Zh., 62:3 (2021),  498–508
  7. Heights of minor faces in 3-polytopes

    Sibirsk. Mat. Zh., 62:2 (2021),  250–268
  8. Soft 3-stars in sparse plane graphs

    Sib. Èlektron. Mat. Izv., 17 (2020),  1863–1868
  9. An extension of Franklin's Theorem

    Sib. Èlektron. Mat. Izv., 17 (2020),  1516–1521
  10. All tight descriptions of $3$-paths in plane graphs with girth at least $8$

    Sib. Èlektron. Mat. Izv., 17 (2020),  496–501
  11. All tight descriptions of $3$-paths centered at $2$-vertices in plane graphs with girth at least $6$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1334–1344
  12. Low faces of restricted degree in $3$-polytopes

    Sibirsk. Mat. Zh., 60:3 (2019),  527–536
  13. Light minor $5$-stars in $3$-polytopes with minimum degree $5$

    Sibirsk. Mat. Zh., 60:2 (2019),  351–359
  14. Light 3-stars in sparse plane graphs

    Sib. Èlektron. Mat. Izv., 15 (2018),  1344–1352
  15. All tight descriptions of $3$-paths in plane graphs with girth at least $9$

    Sib. Èlektron. Mat. Izv., 15 (2018),  1174–1181
  16. Describing neighborhoods of $5$-vertices in a class of $3$-polytopes with minimum degree $5$

    Sibirsk. Mat. Zh., 59:1 (2018),  56–64
  17. Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices

    Sibirsk. Mat. Zh., 58:4 (2017),  771–778
  18. The height of faces of $3$-polytopes

    Sibirsk. Mat. Zh., 58:1 (2017),  48–55
  19. Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$

    Sib. Èlektron. Mat. Izv., 13 (2016),  584–591
  20. Describing $4$-paths in $3$-polytopes with minimum degree $5$

    Sibirsk. Mat. Zh., 57:5 (2016),  981–987
  21. Light and low $5$-stars in normal plane maps with minimum degree $5$

    Sibirsk. Mat. Zh., 57:3 (2016),  596–602
  22. Description of faces in 3-polytopes without vertices of degree from 4 to 9

    Mathematical notes of NEFU, 23:3 (2016),  46–54
  23. Tight description of 4-paths in 3-polytopes with minimum degree 5

    Mathematical notes of NEFU, 23:1 (2016),  46–55
  24. Heights of minor faces in triangle-free $3$-polytopes

    Sibirsk. Mat. Zh., 56:5 (2015),  982–987
  25. Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$

    Sibirsk. Mat. Zh., 56:4 (2015),  775–789
  26. The vertex-face weight of edges in $3$-polytopes

    Sibirsk. Mat. Zh., 56:2 (2015),  338–350
  27. The weight of edge in 3-polytopes

    Sib. Èlektron. Mat. Izv., 11 (2014),  457–463
  28. Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$

    Sibirsk. Mat. Zh., 55:1 (2014),  17–24
  29. 2-distance 4-coloring of planar subcubic graphs

    Diskretn. Anal. Issled. Oper., 18:2 (2011),  18–28
  30. Acyclic 5-choosability of planar graphs without 4-cycles

    Sibirsk. Mat. Zh., 52:3 (2011),  522–541
  31. Injective $(\Delta+1)$-coloring of planar graphs with girth 6

    Sibirsk. Mat. Zh., 52:1 (2011),  30–38
  32. List 2-distance $(\Delta+1)$-coloring of planar graphs with girth at least 7

    Diskretn. Anal. Issled. Oper., 17:5 (2010),  22–36
  33. Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$

    Sib. Èlektron. Mat. Izv., 7 (2010),  275–283
  34. Near-proper vertex 2-colorings of sparse graphs

    Diskretn. Anal. Issled. Oper., 16:2 (2009),  16–20
  35. Partitioning sparse plane graphs into two induced subgraphs of small degree

    Sib. Èlektron. Mat. Izv., 6 (2009),  13–16
  36. List 2-distance $(\Delta+2)$-coloring of planar graphs with girth 6 and $\Delta\ge24$

    Sibirsk. Mat. Zh., 50:6 (2009),  1216–1224
  37. Высота цикла длины 4 в 1-планарных графах с минимальной степенью 5 без треугольников

    Diskretn. Anal. Issled. Oper., 15:1 (2008),  11–16
  38. Circular $(5,2)$-coloring of sparse graphs

    Sib. Èlektron. Mat. Izv., 5 (2008),  417–426
  39. List $2$-arboricity of planar graphs with no triangles at distance less than two

    Sib. Èlektron. Mat. Izv., 5 (2008),  211–214
  40. Planar graphs without triangular $4$-cycles are $3$-choosable

    Sib. Èlektron. Mat. Izv., 5 (2008),  75–79
  41. Предписанная 2-дистанционная $(\Delta+1)$-раскраска плоских графов с заданным обхватом

    Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007),  13–30
  42. Minimax degrees of quasiplane graphs without $4$-faces

    Sib. Èlektron. Mat. Izv., 4 (2007),  435–439
  43. Decomposing a planar graph into a forest and a subgraph of restricted maximum degree

    Sib. Èlektron. Mat. Izv., 4 (2007),  296–299
  44. Oriented 5-coloring of sparse plane graphs

    Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006),  16–32
  45. Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth $6$

    Sib. Èlektron. Mat. Izv., 3 (2006),  441–450
  46. List $(p,q)$-coloring of sparse plane graphs

    Sib. Èlektron. Mat. Izv., 3 (2006),  355–361
  47. Sufficient conditions for the 2-distance $(\Delta+1)$-colorability of planar graphs with girth 6

    Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005),  32–47
  48. An oriented colouring of planar graphs with girth at least $4$

    Sib. Èlektron. Mat. Izv., 2 (2005),  239–249
  49. An oriented $7$-colouring of planar graphs with girth at least $7$

    Sib. Èlektron. Mat. Izv., 2 (2005),  222–229
  50. Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable

    Sib. Èlektron. Mat. Izv., 1 (2004),  129–141
  51. $2$-distance coloring of sparse planar graphs

    Sib. Èlektron. Mat. Izv., 1 (2004),  76–90


© Steklov Math. Inst. of RAS, 2025