|
|
Publications in Math-Net.Ru
-
On the surface wave arising after the delocalization of a quantum particle during adiabatic evolution
Algebra i Analiz, 36:1 (2024), 204–233
-
Adiabatic evolution generated by a one-dimensional Schrödinger operator with decreasing number of eigenvalues
Mat. Zametki, 116:4 (2024), 804–830
-
On the 125th anniversary of V. A. Fock
TMF, 220:3 (2024), 407–414
-
Complex WKB Method (One-Dimensional Linear Problems the Complex Plane)
Mat. Zametki, 114:6 (2023), 1418–1479
-
Close Turning Points and the Harper Operator
Mat. Zametki, 113:5 (2023), 785–790
-
On Bloch solutions of difference equations
Funktsional. Anal. i Prilozhen., 56:4 (2022), 3–16
-
On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schrödinger Operator
Mat. Zametki, 112:5 (2022), 752–769
-
On the absence of eigenvalues of the difference Schrödinger operator on a line with a periodic potential
TMF, 213:3 (2022), 450–458
-
The complex WKB method for a system of two linear difference equations
Algebra i Analiz, 33:2 (2021), 298–326
-
On the spectrum of a non-self-adjoint quasiperiodic operator
Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 16–21
-
Semiclassical Asymptotics for a Difference Schrödinger Equation with Two Coalescent Turning Points
Mat. Zametki, 109:6 (2021), 948–953
-
On a self-similar behavior of logarithmic sums
Zap. Nauchn. Sem. POMI, 506 (2021), 279–292
-
On monodromy matrices for a difference Schrödinger equation on the real line with a small periodic potential
Zap. Nauchn. Sem. POMI, 506 (2021), 223–244
-
On the Hierarchical Behavior of Solutions of the Maryland Equation in the Semiclassical Approximation
Mat. Zametki, 108:6 (2020), 941–946
-
The Spectrum and Density of States of the Almost Mathieu Operator
with Frequency Represented by a Continued Fraction
with Large Elements
Mat. Zametki, 107:6 (2020), 948–953
-
To the memory of Sergei Yur'evich Slavyanov
TMF, 201:2 (2019), 151–152
-
A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant
Funktsional. Anal. i Prilozhen., 52:4 (2018), 89–93
-
Monodromization and Difference Equations with Meromorphic Periodic Coefficients
Funktsional. Anal. i Prilozhen., 52:1 (2018), 92–97
-
Semiclassical Asymptotics of the Spectrum of the Subcritical Harper Operator
Mat. Zametki, 104:6 (2018), 948–952
-
On adiabatic normal modes in a wedge shaped sea
Zap. Nauchn. Sem. POMI, 471 (2018), 261–285
-
Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial
Algebra i Analiz, 29:2 (2017), 193–219
-
On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential $v(z)=e^{-2\pi iz}$
Zap. Nauchn. Sem. POMI, 461 (2017), 279–297
-
Stark–Wannier ladders and cubic exponential sums
Funktsional. Anal. i Prilozhen., 50:3 (2016), 81–85
-
Adiabatic Evolution Generated by a Schrödinger Operator with Discrete and Continuous Spectra
Funktsional. Anal. i Prilozhen., 50:1 (2016), 90–93
-
Quasiclassical asymptotics of Malyuzhinets functions
Zap. Nauchn. Sem. POMI, 451 (2016), 178–187
-
Complex WKB method for difference equations in bounded domains
Zap. Nauchn. Sem. POMI, 438 (2015), 236–254
-
Monodromization method in the theory of almost-periodic equations
Algebra i Analiz, 25:2 (2013), 203–235
-
On the mathematical work of Vladimir Savel'evich Buslaev
Algebra i Analiz, 25:2 (2013), 3–36
-
Complex WKB method for adiabatic perturbations of a periodic Schrödinger operator
Zap. Nauchn. Sem. POMI, 379 (2010), 142–178
-
Adiabatic almost-periodic Schrödinger operators
Zap. Nauchn. Sem. POMI, 379 (2010), 103–141
-
The Harper equation: monodromization without quasiclassics
Algebra i Analiz, 8:2 (1996), 65–97
-
Bloch solutions for difference equations
Algebra i Analiz, 7:4 (1995), 74–122
-
The complex WKB method for the Harper equation
Algebra i Analiz, 6:3 (1994), 59–83
-
Vladimir Savel'evich Buslaev (obituary)
Uspekhi Mat. Nauk, 69:1(415) (2014), 163–168
© , 2025