RUS  ENG
Full version
PEOPLE

Fedotov Aleksandr Aleksandrovich

Publications in Math-Net.Ru

  1. On the surface wave arising after the delocalization of a quantum particle during adiabatic evolution

    Algebra i Analiz, 36:1 (2024),  204–233
  2. Adiabatic evolution generated by a one-dimensional Schrödinger operator with decreasing number of eigenvalues

    Mat. Zametki, 116:4 (2024),  804–830
  3. On the 125th anniversary of V. A. Fock

    TMF, 220:3 (2024),  407–414
  4. Complex WKB Method (One-Dimensional Linear Problems the Complex Plane)

    Mat. Zametki, 114:6 (2023),  1418–1479
  5. Close Turning Points and the Harper Operator

    Mat. Zametki, 113:5 (2023),  785–790
  6. On Bloch solutions of difference equations

    Funktsional. Anal. i Prilozhen., 56:4 (2022),  3–16
  7. On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schrödinger Operator

    Mat. Zametki, 112:5 (2022),  752–769
  8. On the absence of eigenvalues of the difference Schrödinger operator on a line with a periodic potential

    TMF, 213:3 (2022),  450–458
  9. The complex WKB method for a system of two linear difference equations

    Algebra i Analiz, 33:2 (2021),  298–326
  10. On the spectrum of a non-self-adjoint quasiperiodic operator

    Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021),  16–21
  11. Semiclassical Asymptotics for a Difference Schrödinger Equation with Two Coalescent Turning Points

    Mat. Zametki, 109:6 (2021),  948–953
  12. On a self-similar behavior of logarithmic sums

    Zap. Nauchn. Sem. POMI, 506 (2021),  279–292
  13. On monodromy matrices for a difference Schrödinger equation on the real line with a small periodic potential

    Zap. Nauchn. Sem. POMI, 506 (2021),  223–244
  14. On the Hierarchical Behavior of Solutions of the Maryland Equation in the Semiclassical Approximation

    Mat. Zametki, 108:6 (2020),  941–946
  15. The Spectrum and Density of States of the Almost Mathieu Operator with Frequency Represented by a Continued Fraction with Large Elements

    Mat. Zametki, 107:6 (2020),  948–953
  16. To the memory of Sergei Yur'evich Slavyanov

    TMF, 201:2 (2019),  151–152
  17. A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant

    Funktsional. Anal. i Prilozhen., 52:4 (2018),  89–93
  18. Monodromization and Difference Equations with Meromorphic Periodic Coefficients

    Funktsional. Anal. i Prilozhen., 52:1 (2018),  92–97
  19. Semiclassical Asymptotics of the Spectrum of the Subcritical Harper Operator

    Mat. Zametki, 104:6 (2018),  948–952
  20. On adiabatic normal modes in a wedge shaped sea

    Zap. Nauchn. Sem. POMI, 471 (2018),  261–285
  21. Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial

    Algebra i Analiz, 29:2 (2017),  193–219
  22. On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential $v(z)=e^{-2\pi iz}$

    Zap. Nauchn. Sem. POMI, 461 (2017),  279–297
  23. Stark–Wannier ladders and cubic exponential sums

    Funktsional. Anal. i Prilozhen., 50:3 (2016),  81–85
  24. Adiabatic Evolution Generated by a Schrödinger Operator with Discrete and Continuous Spectra

    Funktsional. Anal. i Prilozhen., 50:1 (2016),  90–93
  25. Quasiclassical asymptotics of Malyuzhinets functions

    Zap. Nauchn. Sem. POMI, 451 (2016),  178–187
  26. Complex WKB method for difference equations in bounded domains

    Zap. Nauchn. Sem. POMI, 438 (2015),  236–254
  27. Monodromization method in the theory of almost-periodic equations

    Algebra i Analiz, 25:2 (2013),  203–235
  28. On the mathematical work of Vladimir Savel'evich Buslaev

    Algebra i Analiz, 25:2 (2013),  3–36
  29. Complex WKB method for adiabatic perturbations of a periodic Schrödinger operator

    Zap. Nauchn. Sem. POMI, 379 (2010),  142–178
  30. Adiabatic almost-periodic Schrödinger operators

    Zap. Nauchn. Sem. POMI, 379 (2010),  103–141
  31. The Harper equation: monodromization without quasiclassics

    Algebra i Analiz, 8:2 (1996),  65–97
  32. Bloch solutions for difference equations

    Algebra i Analiz, 7:4 (1995),  74–122
  33. The complex WKB method for the Harper equation

    Algebra i Analiz, 6:3 (1994),  59–83

  34. Vladimir Savel'evich Buslaev (obituary)

    Uspekhi Mat. Nauk, 69:1(415) (2014),  163–168


© Steklov Math. Inst. of RAS, 2025