RUS  ENG
Full version
PEOPLE

Kabanikhin Sergey Igorevich

Publications in Math-Net.Ru

  1. Differential epidemic models and scenarios for restrictive measures

    Zh. Vychisl. Mat. Mat. Fiz., 65:6 (2025),  946–960
  2. Simulation of COVID-19 propagation scenarios in the Republic of Kazakhstan based on regularization of agent model

    Diskretn. Anal. Issled. Oper., 30:1 (2023),  40–66
  3. The identifiability of mathematical models in epidemiology: Tuberculosis, HIV, COVID-19

    Mat. Biolog. Bioinform., 18:1 (2023),  177–214
  4. On mathematical models of COVID-19 pandemic

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  1211–1268
  5. Modeling epidemics: neural network based on data and SIR-model

    Zh. Vychisl. Mat. Mat. Fiz., 63:10 (2023),  1733–1746
  6. Numerical algorithm for source determination in a diffusion–logistic model from integral data based on tensor optimization

    Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023),  1513–1523
  7. Inverse problems and artificial intelligence

    Russian Journal of Cybernetics, 2:3 (2021),  33–43
  8. Sensitivity analysis and practical identifiability of some mathematical models in biology

    Sib. Zh. Ind. Mat., 23:1 (2020),  107–125
  9. Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region

    Sib. Zh. Vychisl. Mat., 23:4 (2020),  395–414
  10. Mathematical modeling of the Wuhan COVID-2019 epidemic and inverse problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:11 (2020),  1950–1961
  11. An algorithm for recovering the characteristics of the initial state of supernova

    Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020),  1035–1044
  12. Inverse problems of natural science

    Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020),  935–938
  13. Optimization methods for solving inverse immunology and epidemiology problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:4 (2020),  590–600
  14. Algorithm for determining the volatility function in the Black–Scholes model

    Zh. Vychisl. Mat. Mat. Fiz., 59:10 (2019),  1815–1820
  15. Recovery of the time-dependent diffusion coefficient by known non-local data

    Sib. Zh. Vychisl. Mat., 21:1 (2018),  55–63
  16. An algorithm for source reconstruction in nonlinear shallow-water equations

    Zh. Vychisl. Mat. Mat. Fiz., 58:8 (2018),  138–147
  17. Inverse problems of immunology and epidemiology

    Eurasian Journal of Mathematical and Computer Applications, 5:2 (2017),  14–35
  18. A numerical algorithm for computing tsunami wave amplitude

    Sib. Zh. Vychisl. Mat., 19:2 (2016),  153–165
  19. Two-dimensional analogs of the equations of Gelfand, Levitan, Krein, and Marchenko

    Eurasian Journal of Mathematical and Computer Applications, 3:2 (2015),  70–99
  20. Comparison of gradient and simplex methods of the numerical solution of the inverse problem for the simplest model of infectious disease

    Yakutian Mathematical Journal, 22:2 (2015),  72–82
  21. Построение фундаментального решения системы уравнений теории упругости

    Sib. Èlektron. Mat. Izv., 11 (2014),  103–114
  22. The problem of electromagnetic field continuation in the direction to inhomogeneities

    Sib. Èlektron. Mat. Izv., 11 (2014),  85–102
  23. 3D modeling of integrated natural and man-made hazards and source determination problem

    Sib. Èlektron. Mat. Izv., 11 (2014),  76–84
  24. Об определении параметров моделей, описываемых системами нелинейных дифференциальных уравнений

    Sib. Èlektron. Mat. Izv., 11 (2014),  62–76
  25. Численное решение обратной задачи фармакокинетики для трехкамерной фармакокинетической модели с внутрисосудистым способом введения препарата

    Sib. Èlektron. Mat. Izv., 11 (2014),  51–61
  26. Универсальный подход к решению обратной задачи фармакокинетики в случае произвольного количества камер

    Sib. Èlektron. Mat. Izv., 11 (2014),  41–49
  27. Numerical solution of initial-boundary value problem for the Helmholtz equation

    Sib. Èlektron. Mat. Izv., 11 (2014),  4–21
  28. Proceedings of the V International scientific school-conference for young scientists "Theory and numerical methods for solving inverse and ill-posed problem"

    Sib. Èlektron. Mat. Izv., 11 (2014),  1–171
  29. Numerical solution eikonal equation

    Sib. Èlektron. Mat. Izv., 10 (2013),  28–34
  30. A numerical method for solving inverse thermoacoustic problem

    Sib. Zh. Vychisl. Mat., 16:1 (2013),  39–44
  31. A numerical method for solving the Dirichlet problem for the wave equation

    Sib. Zh. Ind. Mat., 15:4 (2012),  90–101
  32. Singular value decomposition in the source problem

    Sib. Zh. Vychisl. Mat., 15:2 (2012),  205–211
  33. On the use of a priori information in coefficient inverse problems for hyperbolic equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  147–164
  34. The inverse problem of determining stream watering and discharge in a vertical flowing well

    Sib. Zh. Ind. Mat., 14:3 (2011),  31–36
  35. A comparative analysis of two methods for calculating electromagnetic fields in the near-well space of oil and gas collectors

    Sib. Zh. Ind. Mat., 14:2 (2011),  132–138
  36. Finite element method for Helmholtz equation

    Sib. Èlektron. Mat. Izv., 7 (2010),  362–379
  37. Investigation of mathematical model of electromagnetic probe in axially symmetrical borehole

    Sib. Èlektron. Mat. Izv., 7 (2010),  307–321
  38. Direct methods for solving inverse acoustic problems

    Sib. Èlektron. Mat. Izv., 7 (2010),  199–206
  39. Proceedings of the first international scientific school-conference for young scientists “Theory and numerical methods for solving inverse and ill-posed problem”, Part I

    Sib. Èlektron. Mat. Izv., 7 (2010),  1–394
  40. Direct and iteration methods for solving inverse and ill-posed problems

    Sib. Èlektron. Mat. Izv., 5 (2008),  595–608
  41. The gradient-based method for solving the inverse coefficient heat-conduction problem

    Sib. Zh. Vychisl. Mat., 11:1 (2008),  41–51
  42. Justification of the steepest descent method for the integral statement of an inverse problem for a hyperbolic equation

    Sibirsk. Mat. Zh., 42:3 (2001),  567–584
  43. A discrete analogue of the Gel'fand–Levitan method in a two-dimensional inverse problem for a hyperbolic equation

    Sibirsk. Mat. Zh., 40:2 (1999),  307–324
  44. Short-time dielectric well-logging

    Dokl. Akad. Nauk, 337:3 (1994),  386–388
  45. An inverse problem for an integro-differential equation

    Sibirsk. Mat. Zh., 33:3 (1992),  58–68
  46. Solution of one-dimensional inverse problems of electrodynamics by the Newton–Kantorovich method

    Zh. Vychisl. Mat. Mat. Fiz., 32:12 (1992),  1900–1915
  47. Investigation of a differential-difference analogue of a three-dimensional problem of integral geometry

    Dokl. Akad. Nauk SSSR, 311:4 (1990),  794–797
  48. Linear regularization of multidimensional inverse problems for hyperbolic equations

    Dokl. Akad. Nauk SSSR, 309:4 (1989),  791–795
  49. Regularization of Volterra operator equations of the first kind with a boundedly Lipschitz-continuous kernel

    Dokl. Akad. Nauk SSSR, 306:4 (1989),  785–788
  50. Regularization of multidimensional inverse problems for hyperbolic equations on the basis of a projection method

    Dokl. Akad. Nauk SSSR, 292:3 (1987),  534–537
  51. Stability of a finite-difference analogue of a two-dimensional problem of integral geometry

    Dokl. Akad. Nauk SSSR, 292:1 (1987),  25–29
  52. The solvability of inverse problems for differential equations

    Dokl. Akad. Nauk SSSR, 277:4 (1984),  788–791
  53. An inverse problem for $\mathscr{P}_n$-approximation of the kinetic transport equation

    Dokl. Akad. Nauk SSSR, 276:2 (1984),  296–299
  54. Inverse problem of the theory of wave propagation in a semi-infinite nonregular waveguide

    Differ. Uravn., 19:4 (1983),  603–607
  55. On the theory of inverse problems of electrodynamics

    Dokl. Akad. Nauk SSSR, 266:5 (1982),  1070–1073
  56. Application of energy inequalities to an inverse problem for a hyperbolic equation

    Differ. Uravn., 15:1 (1979),  61–67
  57. A finite-difference method of finding the coefficients of a hyperbolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 19:2 (1979),  417–425

  58. Boris Nikolaevich Chetverushkin (on his eightieth birthday)

    Uspekhi Mat. Nauk, 79:4(478) (2024),  181–187
  59. Vladimir Gavrilovich Romanov — leader of the Siberian School of Inverse Problems

    Sib. Èlektron. Mat. Izv., 21:2 (2024),  1–20
  60. Sergey Grigorievich Pyatkov (on 65th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:1 (2021),  131–133
  61. In memory of Aleksandr Sergeevich Kholodov

    Mat. Model., 30:1 (2018),  135–136
  62. Proceedings of the IV International scientific school-conference for young scientists “Theory and numerical methods for solving inverse and ill-posed problem”. Part I

    Sib. Èlektron. Mat. Izv., 10 (2013),  1–86
  63. Alexander Kozhanov (to the $60^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14,  187–189
  64. Inverse and Ill-Posed problems

    Sib. Èlektron. Mat. Izv., 7 (2010),  380–394
  65. Mikhail Mikhaĭlovich Lavrent'ev

    Sib. Zh. Ind. Mat., 13:3 (2010),  3–5
  66. V. G. Romanov: On the occasion of his 70th birthday

    Sib. Zh. Ind. Mat., 11:4 (2008),  3–4
  67. On the anniversary of Romanov Vladimir Gavrilovich

    Sib. Zh. Vychisl. Mat., 11:4 (2008),  359–360
  68. Academician M. M. Lavrent'ev (on the occasion of his 75th birthday)

    Sib. Zh. Ind. Mat., 10:3 (2007),  3–12
  69. Mikhail Mikhailovich Lavrent'ev (on the occasion of his seventieth birthday)

    Sib. Zh. Ind. Mat., 5:2 (2002),  3–6


© Steklov Math. Inst. of RAS, 2025