RUS  ENG
Full version
PEOPLE

Zolotykh Nikolai Yurevich

Publications in Math-Net.Ru

  1. Minimizing a symmetric quasiconvex function on a two-dimensional lattice

    Diskretn. Anal. Issled. Oper., 25:3 (2018),  23–35
  2. Double description method over the field of algebraic numbers

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:2 (2018),  161–175
  3. On the dynamic problem of computing generators of a polyhedral cone

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:1 (2017),  5–12
  4. Elimination of inequalities from a facet description of a polyhedron

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  37–45
  5. Fast method for verifying Chernikov rules in Fourier–Motzkin elimination

    Zh. Vychisl. Mat. Mat. Fiz., 55:1 (2015),  165–172
  6. On an upper bound for the cardinality of a minimal teaching set of a threshold function

    Diskretn. Anal. Issled. Oper., 19:5 (2012),  35–46
  7. New modification of the double description method for constructing the skeleton of a polyhedral cone

    Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012),  153–163
  8. Application of the Quickhull algorithm's principles to the double description method

    Num. Meth. Prog., 12:2 (2011),  232–237
  9. Parallel implementation of prediction algorithm in gradient boosting trees method

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 10,  82–89
  10. On a multicriterial problem of integer linear programming

    Diskretn. Anal. Issled. Oper., Ser. 2, 12:2 (2005),  72–84
  11. On the complexity of the solution of a class of integer linear programming problems

    Diskretn. Anal. Issled. Oper., Ser. 2, 10:1 (2003),  3–10
  12. Estimating the complexity of deciphering a threshold functions in a $k$-valued logic

    Zh. Vychisl. Mat. Mat. Fiz., 39:2 (1999),  346–352
  13. On threshold and nearly threshold functions defined at integer points of a polytope

    Diskretn. Anal. Issled. Oper., Ser. 1, 5:2 (1998),  40–54
  14. Deciphering of threshold functions of $k$-valued logic

    Diskretn. Anal. Issled. Oper., 2:3 (1995),  18–23


© Steklov Math. Inst. of RAS, 2024