RUS  ENG
Full version
PEOPLE

Krupnov Aleksandr Aleksandrovich

Publications in Math-Net.Ru

  1. Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 1,  38–44
  2. Simulation of oxygen atom adsorption on an $\mathrm{Al}_2\mathrm{O}_3$ surface by the density functional method

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 4,  58–62
  3. Experimental and theoretical modelling of incomplete energy accommodation of heterogeneous recombination in a diffusion-calorimetric unit

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 3,  32–38
  4. Effect on nitrogen oxide formation in heterogeneous catalytic reactions on heat fluxes directed to a surface of reusable space vehicles

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 1,  30–36
  5. Some details of modeling of heat transfer with catalytic surfaces in the re-enter atmosphere problem

    Fundam. Prikl. Mat., 6:2 (2000),  433–439
  6. Peculiarities of modeling of heat transfer with catalytic surfaces during body entering into the Earth atmosphere

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5,  64–67
  7. Comparison of phenomenological catalytic activity for high-temperature reusable surface insulation

    Fundam. Prikl. Mat., 2:4 (1996),  1213–1225
  8. Numerical investigation of an inviscid flow in a shock layer near blunt bodies by the global iteration method

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 4,  85–90
  9. Numerical modelling of chemically non-equilibrium flow of partially ionized air in a viscous shock layer

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2,  54–59
  10. Method of global iterations for solving problems of ideal-gas hypersonic flow past blunt bodies

    Dokl. Akad. Nauk, 339:3 (1994),  342–345
  11. Solution to equations for the viscous shock layer by the method of simple global iterations over the pressure gradient and shock-wave shape

    Dokl. Akad. Nauk, 338:3 (1994),  333–336
  12. Numerical study of turbulent flow of partly ionized air in a viscous shock layer

    Prikl. Mekh. Tekh. Fiz., 35:5 (1994),  27–32
  13. A numerical method for solving equations of a multicomponent turbulent viscous shock layer on a catalytic surface

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 3,  66–74


© Steklov Math. Inst. of RAS, 2025