|
|
Publications in Math-Net.Ru
-
Modeling of catalytic activity of an $\mathrm{Al}_2\mathrm{O}_3$ surface on the basis of the first principles
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 1, 38–44
-
Simulation of oxygen atom adsorption on an $\mathrm{Al}_2\mathrm{O}_3$ surface by the density functional method
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 4, 58–62
-
Experimental and theoretical modelling of incomplete energy accommodation of heterogeneous recombination in a diffusion-calorimetric unit
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 3, 32–38
-
Effect on nitrogen oxide formation in heterogeneous catalytic reactions
on heat fluxes directed to a surface of reusable space vehicles
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 1, 30–36
-
Some details of modeling of heat transfer with catalytic surfaces in the re-enter atmosphere problem
Fundam. Prikl. Mat., 6:2 (2000), 433–439
-
Peculiarities of modeling of heat transfer with catalytic surfaces during
body entering into the Earth atmosphere
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5, 64–67
-
Comparison of phenomenological catalytic activity for high-temperature reusable surface insulation
Fundam. Prikl. Mat., 2:4 (1996), 1213–1225
-
Numerical investigation of an inviscid flow in a shock layer near blunt bodies by the global iteration method
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 4, 85–90
-
Numerical modelling of chemically non-equilibrium flow of partially ionized air in a viscous shock layer
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2, 54–59
-
Method of global iterations for solving problems of ideal-gas hypersonic flow past blunt bodies
Dokl. Akad. Nauk, 339:3 (1994), 342–345
-
Solution to equations for the viscous shock layer by the method of simple global iterations over the pressure gradient and shock-wave shape
Dokl. Akad. Nauk, 338:3 (1994), 333–336
-
Numerical study of turbulent flow of partly ionized air in a viscous shock layer
Prikl. Mekh. Tekh. Fiz., 35:5 (1994), 27–32
-
A numerical method for solving equations of a multicomponent turbulent viscous shock layer on a catalytic surface
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 3, 66–74
© , 2025