|
|
Publications in Math-Net.Ru
-
High-accuracy schemes of the finite element method for systems of degenerate elliptic equations on an interval
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 7, 22–34
-
Error estimates for projection-difference schemes for degenerate nonstationary equations
Differ. Uravn., 42:7 (2006), 951–955
-
Correctness of double-layer multicomponent difference schemes for nonlinear hyperbolic equations
Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 9, 50–57
-
Semidiscrete Schemes of the Finite Element Method for Degenerate Hyperbolic Equations
Differ. Uravn., 41:7 (2005), 950–954
-
A Study of Variable Step Iterative Methods for Variational Inequalities of the Second Kind
Differ. Uravn., 40:7 (2004), 908–919
-
Semidiscrete Finite Element Schemes for Nonstationary Degenerating Equations
Differ. Uravn., 39:7 (2003), 955–959
-
Investigation of the Projection Method for Degenerate Nonstationary Equations
Differ. Uravn., 38:7 (2002), 986–988
-
Error Estimates of the Galerkin Method for Quasilinear Hyperbolic Equations
Differ. Uravn., 37:7 (2001), 941–949
-
A mixed finite-element method for quasilinear degenerate fourth-order elliptic equations
Differ. Uravn., 36:7 (2000), 946–952
-
Correctness of an operator-differential scheme and substantiation of the Galerkin method for hyperbolic equations
Sib. Zh. Vychisl. Mat., 3:4 (2000), 357–368
-
The finite element method for fourth-order quasilinear degenerate elliptic equations
Differ. Uravn., 35:2 (1999), 232–237
-
Questions of solvability and a finite element method for higher-order degenerate elliptic equations
Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5, 57–64
-
Investigation of the convergence of iterative methods for solving nonlinear problems in filtration theory
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 11, 8–13
-
Investigation of the well-posedness of the generalized solution of the filtration consolidation problem
Differ. Uravn., 33:4 (1997), 515–521
-
On mathematical problems in the theory of multilayer shells with transversally soft fillings
Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 4, 66–76
-
On the solvability of a variational inequality in the theory of nonlinear nonstationary filtration
Differ. Uravn., 32:7 (1996), 958–965
-
Error estimates for the scheme of the finite element method for second-order quasilinear degenerate elliptic equations
Differ. Uravn., 30:7 (1994), 1239–1243
-
Estimates for the accuracy of schemes of the finite element method for second-order degenerate elliptic equations
Differ. Uravn., 29:7 (1993), 1210–1215
-
Approximate solution of a problem of filtration consolidation
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 3, 3–6
-
Convergence of the Bubnov–Galerkin method with perturbations for symmetric spectral problems with nonlinear appearance of the parameter
Differ. Uravn., 27:7 (1991), 1144–1153
-
Investigation of nonlinear two-layer operator-difference schemes with weights
Differ. Uravn., 21:7 (1985), 1217–1227
-
Correctness of a class of conservative nonlinear operator-difference schemes
Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 10, 47–55
-
Difference approximation of a nonlinear nonstationary variational inequality
Differ. Uravn., 20:7 (1984), 1237–1247
-
Difference methods for solving nonlinear problems of filtration theory
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 7, 28–45
-
On the correctness of nonlinear two-layer operator-difference schemes
Differ. Uravn., 17:7 (1981), 1304–1316
-
Investigation of an implicit difference scheme for a variational inequality of nonlinear filtration theory
Differ. Uravn., 16:7 (1980), 1255–1264
-
Difference schemes for quasilinear elliptic equations
Zh. Vychisl. Mat. Mat. Fiz., 20:2 (1980), 334–349
-
Difference schemes for an equation of non-steady-state nonlinear filtration
Differ. Uravn., 15:9 (1979), 1692–1706
-
The variational method for equations with monotone discontinuous operators
Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 11, 63–69
-
Difference approximation of the Dirichlet problem for a quasilinear elliptic equation in a domain with a curvilinear boundary
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 10, 50–55
-
Difference schemes for quasilinear elliptic equations in polar coordinates
Differ. Uravn., 12:6 (1976), 1052–1060
-
Difference schemes for certain boundary value problems for the biharmonic equation on a polar net
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 12, 57–65
-
The convergence of difference schemes for quasilinear equations that are parabolic on the solution
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 12, 30–42
-
The solution of certain nonlinear problems of filtration theory
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 6, 73–81
-
On the correctness of nonlinear two-level operator-difference schemes
Dokl. Akad. Nauk SSSR, 215:2 (1974), 263–265
-
Difference schemes for quasilinear elliptic equations with discontinuous coefficients
Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 5, 128–137
-
A study of nonlinear problems of filtration theory
Trudy Sem. Kraev. Zadacham, 11 (1974), 64–72
-
Difference schemes for quasilinear elliptic equations of arbitrary order
Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 9, 46–53
-
Difference schemes for nonlinear multidimensional elliptic equations. II
Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 3, 44–52
-
An investigation of difference schemes for a certain class of quasilinear parabolic equations
Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 1, 71–77
-
Difference schemes for nonlinear parabolic equations in several dimensions
Issled. Prikl. Mat., 1 (1973), 64–70
-
Factorized Rothe schemes for quasilinear parabolic equations
Differ. Uravn., 8:9 (1972), 1674–1681
-
The method of lines for quasilinear elliptic equations
Differ. Uravn., 8:5 (1972), 891–901
-
Difference schemes for nonlinear multidimensional elliptic equations. I
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 11, 23–31
-
Efficient difference schemes for quasilinear parabolic equations
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 3, 23–31
-
The method of lines for nonlinear elliptic equations of arbitrary order
Differ. Uravn., 7:9 (1971), 1649–1654
-
An investigation of the method of nets for nonlinear elliptic equations of arbitrary order
Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 10, 37–43
-
An investigation of a certain class of nonlinear difference schemes
Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 7, 63–71
-
Investigation of difference schemes for nonlinear equations with the help of a variational method
Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 3, 59–65
-
Investigating the method of straight lines for non-linear elliptic equations
Zh. Vychisl. Mat. Mat. Fiz., 7:3 (1967), 677–680
-
The variational method for nonlinear operator equations
Uchenye Zapiski Kazanskogo Universiteta, 125:2 (1965), 95–101
-
An approximate solution of one-dimensional boundary-value problems
Izv. Vyssh. Uchebn. Zaved. Mat., 1962, no. 2, 95–99
-
The convergence of Galerkin type methods
Dokl. Akad. Nauk SSSR, 120:2 (1958), 242–244
-
On the convergence of methods analogous to that of Galerkin
Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 6, 176–179
-
A generalization of Galerkin's method
Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 4, 153–160
-
Vyacheslav Nikolaevich Abrashin
Differ. Uravn., 41:4 (2005), 561–569
-
A. A. Samarskii, A. V. Gulin. Ustoichivost' raznostnykh skhem. (Stability of difference schemes). 415 p. “Nauka”, Editor-in-chief of phys.-mat. lit., Moscow, 1973. (Book review)
Zh. Vychisl. Mat. Mat. Fiz., 14:5 (1974), 1358–1359
-
Letter to the editors
Izv. Vyssh. Uchebn. Zaved. Mat., 1959, no. 2, 275
-
Поправки к статье “О сходимости методов типа Галеркина” (ДАН, т. 120, № 2, 1958 г.)
Dokl. Akad. Nauk SSSR, 122:4 (1958), 542
© , 2025