RUS  ENG
Full version
PEOPLE

Bedarev Igor' Aleksandrovich

Publications in Math-Net.Ru

  1. Simulation of polymethyl methacrylate and hexamine sublimation with high temperature nitrogen in an axisymmetrical formulation

    Chelyab. Fiz.-Mat. Zh., 9:4 (2024),  650–657
  2. Direct numerical simulation of solid material sublimation in an axisymmetrical formulation

    Chelyab. Fiz.-Mat. Zh., 9:3 (2024),  483–489
  3. Numerical study of the gas detonation attenuation in the acetylene-air mixture

    Chelyab. Fiz.-Mat. Zh., 9:2 (2024),  187–194
  4. Numerical simulation of ignition and combustion boron gas suspension behind shock waves

    Fizika Goreniya i Vzryva, 60:3 (2024),  32–44
  5. Numerical simulation of oblique detonation initiation by a high-velocity body flying in a hydrogen-air mixture

    Fizika Goreniya i Vzryva, 60:1 (2024),  18–28
  6. Numerical modeling of the solid fuel sublimation in a high-temperature gas flow in the continuum approach and with boundary separation between two media

    Chelyab. Fiz.-Mat. Zh., 7:3 (2022),  326–340
  7. Two-dimensional simulation of attenuation of a detonation wave passing through a region with circular obstacles

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:14 (2021),  8–10
  8. Numerical modeling of the shock and detonation waves interaction with particles on microlevel

    Chelyab. Fiz.-Mat. Zh., 3:2 (2018),  172–192
  9. Computation of traveling waves in a heterogeneous medium with two pressures and a gas equation of state depending on phase concentrations

    Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018),  806–820
  10. The shock waves structure in the gas-particles mixture with chaotic pressure

    Mat. Model., 29:6 (2017),  3–20
  11. Modeling the dynamics of several particles behind a propagating shock wave

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:24 (2016),  17–23
  12. Application of detailed and reduced kinetic schemes for the description of detonation of diluted hydrogen–air mixtures

    Fizika Goreniya i Vzryva, 51:5 (2015),  22–33
  13. Computation of wave interference and relaxation of particles after passing of a shock wave

    Prikl. Mekh. Tekh. Fiz., 56:5 (2015),  18–29
  14. Numerical analysis of the flow around a system of bodies behind the shock wave

    Fizika Goreniya i Vzryva, 48:4 (2012),  83–92
  15. Physical and mathematical modeling of a supersonic flow around a cylinder with a porous insert

    Prikl. Mekh. Tekh. Fiz., 52:1 (2011),  13–23
  16. Mathematical modeling of detonation suppression in a hydrogen-oxygen mixture by inert particles

    Fizika Goreniya i Vzryva, 46:3 (2010),  103–115
  17. Transmission of detonation wave throgh cloud of particles

    Vestnik Chelyabinsk. Gos. Univ., 2010, no. 12,  110–120
  18. Shock-wave-initiated lifting of particles from a cavity

    Prikl. Mekh. Tekh. Fiz., 48:1 (2007),  24–34
  19. Comparative analysis of three mathematical models of hydrogen ignition

    Fizika Goreniya i Vzryva, 42:1 (2006),  26–33
  20. Structure of supersonic turbulent flows in the vicinity of inclined backward-facing steps

    Prikl. Mekh. Tekh. Fiz., 47:6 (2006),  48–58
  21. Numerical study of methane pyrolysis in shock waves

    Fizika Goreniya i Vzryva, 40:5 (2004),  91–101
  22. Experimental and numerical study of a hypersonic separated flow in the vicinity of a cone-flare model

    Prikl. Mekh. Tekh. Fiz., 43:6 (2002),  100–112
  23. Modeling of supersonic turbulent flows in the vicinity of axisymmetric configurations

    Prikl. Mekh. Tekh. Fiz., 43:6 (2002),  93–99
  24. Computation of gas–dynamic parameters and heat transfer in supersonic turbulent separated flows near backward–facing steps

    Prikl. Mekh. Tekh. Fiz., 42:1 (2001),  56–64
  25. Turbulent separated flows at various Mach numbers

    Mat. Model., 12:8 (2000),  57–68


© Steklov Math. Inst. of RAS, 2025