RUS  ENG
Full version
PEOPLE

Ryazantseva Irina Prokof'evna

Publications in Math-Net.Ru

  1. Simplification method for nonlinear equations of monotone type in Banach space

    Zhurnal SVMO, 23:2 (2021),  185–192
  2. Continuous method of second order with constant coefficients for monotone equations in Hilbert space

    Zhurnal SVMO, 22:4 (2020),  449–455
  3. Continuous method of second order with constant coefficients for equations of monotone type

    Zhurnal SVMO, 20:1 (2018),  39–45
  4. Сontinuous regularization analog of Newton method for m-accretive equations

    Zhurnal SVMO, 19:1 (2017),  77–87
  5. Regularized continuous analog of the Newton method for monotone equations in the Hilbert space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 11,  53–67
  6. A continuous analogue of modified Newton method

    Zhurnal SVMO, 18:2 (2016),  67–71
  7. On some method of regularization for monotone equations in Hilbert space

    Zhurnal SVMO, 18:1 (2016),  70–74
  8. Second-order regularized continuous method for accretive inclusions

    Zhurnal SVMO, 17:1 (2015),  111–119
  9. First-order regularized iterative methods for mixed variational inequalities

    Zhurnal SVMO, 16:1 (2014),  16–23
  10. First-order regularization methods for accretive inclusions in a Banach space

    Zh. Vychisl. Mat. Mat. Fiz., 54:11 (2014),  1711–1723
  11. Iterative processes of the second order monotone inclusions in a Hilbert space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 7,  52–61
  12. First-order iterative method for accretive inclusions in Banach space

    Zhurnal SVMO, 15:3 (2013),  29–34
  13. Continuous first-order methods for monotone inclusions in a Hilbert space

    Zh. Vychisl. Mat. Mat. Fiz., 53:8 (2013),  1241–1248
  14. First-order regularized continuous methods for mixed variational inequalities

    Zhurnal SVMO, 14:1 (2012),  36–44
  15. Certain first-order iterative methods for mixed variational inequalities in a Hilbert space

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  762–770
  16. Iterative regularized method of first-order for general variational inequalities

    Zhurnal SVMO, 12:1 (2010),  33–40
  17. First-order continuous regularization methods for generalized variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010),  636–650
  18. Operator regularization method for general variational inequalities

    Trudy SVMO, 11:1 (2009),  29–41
  19. Stable solution methods for some nonobvious equations

    Trudy SVMO, 10:2 (2008),  55–58
  20. Second-order continuous regularized method for quasivariational inequalities of special form

    Trudy SVMO, 10:1 (2008),  82–88
  21. A continuous regularization method of the first order for nonlinear monotone equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 1,  45–53
  22. Regularization methods for certain quasi-variational inequalities with inexactly given data in a Hilbert space

    Zh. Vychisl. Mat. Mat. Fiz., 47:8 (2007),  1287–1297
  23. First-order methods for certain quasi-variational inequalities in a Hilbert space

    Zh. Vychisl. Mat. Mat. Fiz., 47:2 (2007),  189–196
  24. A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space

    Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1184–1194
  25. A Second-Order Continuous Regularization Method for Nonlinear $d$-Accretive Equations in a Banach Space

    Differ. Uravn., 41:6 (2005),  771–780
  26. Regularized first-order methods for monotone variational inequalities with generalized projection operators

    Zh. Vychisl. Mat. Mat. Fiz., 45:11 (2005),  1954–1962
  27. First-order continuous and iterative methods with a generalized projection operator for monotone variational inequalities in a Banach space

    Zh. Vychisl. Mat. Mat. Fiz., 45:3 (2005),  400–410
  28. How to Approximate Solutions of Variational Inequalities with Monotone Mappings in a Banach Space If the Data Are Known Approximately

    Differ. Uravn., 40:8 (2004),  1108–1117
  29. A continuous second-order regularization method for monotone equations in a Banach space

    Zh. Vychisl. Mat. Mat. Fiz., 44:6 (2004),  968–978
  30. The second order regularization techniques for convex extremal problems in a Banach space

    Zh. Vychisl. Mat. Mat. Fiz., 44:2 (2004),  195–205
  31. A Continuous First-Order Regularization Method for Monotone Variational Inequalities in a Banach Space

    Differ. Uravn., 39:1 (2003),  113–117
  32. Regularized proximal algorithms for nonlinear equations of monotone type in a Banach space

    Zh. Vychisl. Mat. Mat. Fiz., 42:9 (2002),  1295–1303
  33. A second-order iterative regularization method for convex constrained minimization problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 12,  67–77
  34. On a method of iterative regularization for convex minimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 40:2 (2000),  181–187
  35. On the solvability of variational inequalities with unbounded semimonotone mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 7,  49–53
  36. A continuous method for constrained minimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 39:5 (1999),  734–742
  37. On a continuous method for solving convex extremal problems

    Differ. Uravn., 34:4 (1998),  480–485
  38. On the pseudosolutions of monotone equations with approximately given operators

    Zh. Vychisl. Mat. Mat. Fiz., 38:5 (1998),  718–723
  39. On equations with perturbed accretive mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 7,  61–67
  40. A choice of the regularization parameter in solving convex extremal problems

    Zh. Vychisl. Mat. Mat. Fiz., 37:7 (1997),  895–896
  41. Some continuous regularization methods for monotone equations

    Zh. Vychisl. Mat. Mat. Fiz., 34:1 (1994),  3–11
  42. Tikhonov's method in nonlinear monotone problems

    Zh. Vychisl. Mat. Mat. Fiz., 32:8 (1992),  1330–1331
  43. The minimum-residue principle in non-linear monotonic problems

    Zh. Vychisl. Mat. Mat. Fiz., 31:5 (1991),  777–781
  44. A stable method for determining pseudo-solutions of nonlinear equations with monotone operators

    Differ. Uravn., 25:8 (1989),  1457–1459
  45. An algorithm for solving nonlinear monotone equations with unknown input data error bound

    Zh. Vychisl. Mat. Mat. Fiz., 29:10 (1989),  1572–1576
  46. Iterative methods of Newton–Kantorovich type in the solution of nonlinear ill-posed problems with monotone operators

    Differ. Uravn., 23:11 (1987),  2012–2014
  47. Regularizing algorithms for equations with monotone mappings in the presence of random noise

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 12,  59–65
  48. Quasioptimal choice of regularization parameter in the solution of nonlinear equations with monotone operators

    Zh. Vychisl. Mat. Mat. Fiz., 26:11 (1986),  1731–1735
  49. Stopping rules in the solution of nonlinear ill-posed problems

    Avtomat. i Telemekh., 1985, no. 10,  27–30
  50. The choice of the regularization parameter in solving nonlinear problems with monotone operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 4,  55–57
  51. Nonlinear operator equations with accretive mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 1,  42–46
  52. Variational inequalities with monotone operators on sets that are given approximately

    Zh. Vychisl. Mat. Mat. Fiz., 24:6 (1984),  932–936
  53. The principle of the residual for nonlinear problems with monotone operators

    Differ. Uravn., 19:6 (1983),  1079–1080
  54. Solution of variational inequalities with monotone operators by the regularization method

    Zh. Vychisl. Mat. Mat. Fiz., 23:2 (1983),  479–483
  55. Variational inequalities with discontinuous monotone mappings

    Dokl. Akad. Nauk SSSR, 262:6 (1982),  1289–1293
  56. Choice of the regularization parameter for nonlinear equations with a monotone approximately specified operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 9,  49–53
  57. On the construction of regularizing algorithms for equations with monotone mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 8,  39–43
  58. Equations with semimonotone discontinuous mappings

    Mat. Zametki, 30:1 (1981),  143–152
  59. Regularization of equations with accretive operators by the method of successive approximations

    Sibirsk. Mat. Zh., 21:1 (1980),  223–226
  60. The solution of nonlinear problems with monotone discontinuous mappings

    Differ. Uravn., 15:2 (1979),  331–342
  61. On the question of the solution of nonlinear equations with discontinuous monotone operators

    Sibirsk. Mat. Zh., 20:1 (1979),  199–202
  62. Investigation of the Martian thermal history

    Dokl. Akad. Nauk SSSR, 243:3 (1978),  600–602
  63. The residual principle in nonlinear problems with discontinuous monotone mappings is a regularizing algorithm

    Dokl. Akad. Nauk SSSR, 239:5 (1978),  1017–1020
  64. The Galerkin method for the solution of equations with discontinuous monotone operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 7,  68–72
  65. Regularization of nonlinear equations with monotone discontinuous operators

    Zh. Vychisl. Mat. Mat. Fiz., 16:3 (1976),  778–781
  66. Regularization of nonlinear equations with monotone operators

    Zh. Vychisl. Mat. Mat. Fiz., 15:2 (1975),  283–289

  67. To the 80th anniversary of Vladimir Konstantinovich Gorbunov

    Zhurnal SVMO, 23:2 (2021),  207–210
  68. In memory of Spivak Semen Izrailevich

    Zhurnal SVMO, 22:4 (2020),  463–466
  69. In memory of Vladimir Nikolaevich Shchennikov

    Zhurnal SVMO, 21:2 (2019),  269–273
  70. To the seventieth anniversary of Vladimir Fedorovich Tishkin

    Zhurnal SVMO, 21:1 (2019),  111–113
  71. Velmisov Petr Aleksandrovich (on his seventieth birthday)

    Zhurnal SVMO, 20:3 (2018),  338–340
  72. In memory of Boris Vladimirovich Loginov

    Zhurnal SVMO, 20:1 (2018),  103–106
  73. On the 80th anniversary of professor E.V. Voskresensky's birthday

    Zhurnal SVMO, 19:4 (2017),  95–99
  74. In memory of Alekseenko Sergey Nikolaevich

    Zhurnal SVMO, 19:1 (2017),  140–142
  75. Поправки к статье “Принцип невязки в нелинейных задачах с монотонными разрывными отображениями – регуляризующий алгоритм” (ДАН, т. 239, № 5, 1978 г.)

    Dokl. Akad. Nauk SSSR, 241:5 (1978),  1000


© Steklov Math. Inst. of RAS, 2024