RUS  ENG
Full version
PEOPLE

Brizitskii Roman Viktorovich

Publications in Math-Net.Ru

  1. Generalised Boussinesq model with variable coefficients

    Sib. Èlektron. Mat. Izv., 21:1 (2024),  213–227
  2. On the uniqueness of a solution to the multiplicative control problem for the electron drift–diffusion model

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:1 (2024),  3–18
  3. Multiplicative control problem for a nonlinear reaction–diffusion model

    Zh. Vychisl. Mat. Mat. Fiz., 64:1 (2024),  77–93
  4. Boundary control problems for nonlinear reaction-diffusion-convection model

    Dal'nevost. Mat. Zh., 23:1 (2023),  106–111
  5. Inverse problems for the diffusion-drift model of charging of an inhomogeneous polar dielectric

    Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023),  1537–1552
  6. Inverse problem of recovering the electron diffusion coefficient

    Dal'nevost. Mat. Zh., 22:2 (2022),  201–206
  7. Theoretical analysis and numerical implementation of a stationary diffusion–drift model of polar dielectric charging

    Zh. Vychisl. Mat. Mat. Fiz., 62:10 (2022),  1696–1706
  8. Analysis of the boundary value and control problems for nonlinear reaction–diffusion–convection equation

    J. Sib. Fed. Univ. Math. Phys., 14:4 (2021),  452–462
  9. Boundary and extremum problems for the nonlinear reaction–diffusion–convection equation under the Dirichlet condition

    Zh. Vychisl. Mat. Mat. Fiz., 61:6 (2021),  977–989
  10. Boundary value and extremum problems for generalized Oberbeck–Boussinesq model

    Sib. Èlektron. Mat. Izv., 16 (2019),  1215–1232
  11. Inverse coefficient problems for a non-linear convection–diffusion–reaction equation

    Izv. RAN. Ser. Mat., 82:1 (2018),  17–33
  12. Boundary control problem for a nonlinear convection-diffusion-reaction equation

    Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  2139–2152
  13. Multiplicative control problems for nonlinear convection–diffusion–reaction equation

    Sib. Èlektron. Mat. Izv., 13 (2016),  352–360
  14. Stability estimates of solutions to extremal problems for a nonlinear convection-diffusion-reaction equation

    Sib. Zh. Ind. Mat., 19:2 (2016),  3–16
  15. Stability of solutions to extremum problems for the nonlinear convection-diffusion-reaction equation with the Dirichlet condition

    Zh. Vychisl. Mat. Mat. Fiz., 56:12 (2016),  2042–2053
  16. Boundary value and extremal problems for the nonlinear convection–diffusion–reaction equation

    Sib. Èlektron. Mat. Izv., 12 (2015),  447–456
  17. Theoretical analysis of boundary control extremal problems for Maxwell's equations

    Sib. Zh. Ind. Mat., 14:1 (2011),  3–16
  18. Inverse extremal problems for the Maxwell equations

    Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010),  1038–1046
  19. Regularity of solution of a boundary value problem for Maxwell's equations

    Dal'nevost. Mat. Zh., 9:1-2 (2009),  24–28
  20. Èññëåäîâàíèå îäíîãî êëàññà çàäà÷ óïðàâëåíèÿ äëÿ ñòàöèîíàðíûõ óðàâíåíèé Íàâüå–Ñòîêñà ïðè ñìåøàííûõ ãðàíè÷íûõ óñëîâèÿõ

    Sib. Zh. Ind. Mat., 12:2 (2009),  17–26
  21. On uniqueness of the solution of inverse coefficient problem for the equation of reaction–convection–diffusion

    Dal'nevost. Mat. Zh., 8:2 (2008),  143–151
  22. Asymptotic behavior of solutions to multiplicative control problems for elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008),  1607–1618
  23. Control problems for stationary magnetohydrodynamic equations of a viscous heat-conducting fluid under mixed boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 45:12 (2005),  2131–2147
  24. Control problems for the MGD model of viscous heat-conducting fluid under mixed boundary conditions

    Dal'nevost. Mat. Zh., 5:2 (2004),  226–238
  25. Regularity and uniqueness of the solution of the control problem for the stationary equations of magnetic hydrodynamics with mixed boundary conditions

    Dal'nevost. Mat. Zh., 4:2 (2003),  264–275
  26. Solvability of the inverse extremum problems for stationary equations of magnetic hydrodynamics of viscous fluid with mixed boundary conditions

    Dal'nevost. Mat. Zh., 4:1 (2003),  108–126
  27. Solvability of the mixed problem for stationary equations of magnetic hydrodynamics of viscous fluid

    Dal'nevost. Mat. Zh., 3:2 (2002),  285–301


© Steklov Math. Inst. of RAS, 2025