|
|
Publications in Math-Net.Ru
-
Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations
Chebyshevskii Sb., 25:2 (2024), 296–317
-
On the issue of variational formulation of problems of generalized GN-thermoelasticity
Mat. Model., 36:5 (2024), 19–31
-
Model of bending of an orthotropic cantilever beam of Bernoulli–Euler under the action of unsteady thermomechanodiffusion loads
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024), 682–700
-
Sturm–Liouville problem for a one-dimensional thermoelastic operator in cartesian, cylindrical, and spherical coordinate systems
Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024), 424–442
-
Generalized surface Green's functions for an elastic half-space
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 4, 27–36
-
Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load
Mat. Model., 35:8 (2023), 31–50
-
Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation
Mat. Model., 35:1 (2023), 95–112
-
Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation
Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 1, 25–37
-
Modelling one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022), 62–78
-
Unsteady bending of an orthotropic cantilever Timoshenko beam with allowance for diffusion flux relaxation
Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022), 1895–1911
-
Unsteady electromagnetic elasticity of piezoelectrics considering diffusion
Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020), 193–204
-
Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:1 (2018), 183–195
-
Two-dimensional nonstationary problem of elastic diffusion for an isotropic one-component layer
Prikl. Mekh. Tekh. Fiz., 56:6 (2015), 102–110
-
Two-dimensional unsteady-state problem of elasticity with diffusion for isotropic one-component half-plane
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:4 (2015), 103–111
-
An elastic half space under the action of one-dimensional time-dependent diffusion perturbations
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:1 (2014), 70–78
-
The one-dimensional problem of unsteady-related elastic diffusion layer
Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013), 52–59
-
The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions
Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012), 50–56
© , 2025