RUS  ENG
Full version
PEOPLE

Zemskov Andrei Vladimirovich

Publications in Math-Net.Ru

  1. Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations

    Chebyshevskii Sb., 25:2 (2024),  296–317
  2. On the issue of variational formulation of problems of generalized GN-thermoelasticity

    Mat. Model., 36:5 (2024),  19–31
  3. Model of bending of an orthotropic cantilever beam of Bernoulli–Euler under the action of unsteady thermomechanodiffusion loads

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024),  682–700
  4. Sturm–Liouville problem for a one-dimensional thermoelastic operator in cartesian, cylindrical, and spherical coordinate systems

    Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024),  424–442
  5. Generalized surface Green's functions for an elastic half-space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 4,  27–36
  6. Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load

    Mat. Model., 35:8 (2023),  31–50
  7. Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation

    Mat. Model., 35:1 (2023),  95–112
  8. Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 1,  25–37
  9. Modelling one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022),  62–78
  10. Unsteady bending of an orthotropic cantilever Timoshenko beam with allowance for diffusion flux relaxation

    Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022),  1895–1911
  11. Unsteady electromagnetic elasticity of piezoelectrics considering diffusion

    Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020),  193–204
  12. Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:1 (2018),  183–195
  13. Two-dimensional nonstationary problem of elastic diffusion for an isotropic one-component layer

    Prikl. Mekh. Tekh. Fiz., 56:6 (2015),  102–110
  14. Two-dimensional unsteady-state problem of elasticity with diffusion for isotropic one-component half-plane

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:4 (2015),  103–111
  15. An elastic half space under the action of one-dimensional time-dependent diffusion perturbations

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:1 (2014),  70–78
  16. The one-dimensional problem of unsteady-related elastic diffusion layer

    Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013),  52–59
  17. The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions

    Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012),  50–56


© Steklov Math. Inst. of RAS, 2025