RUS  ENG
Full version
PEOPLE

Kazakov Aleksei Olegovich

Publications in Math-Net.Ru

  1. Scenarios for the Creation of Hyperchaotic Attractors with Three Positive Lyapunov Exponents

    Regul. Chaotic Dyn., 30:2 (2025),  306–324
  2. On Lorenz-type attractors in a six-dimensional generalization of the Lorenz model

    Izvestiya VUZ. Applied Nonlinear Dynamics, 32:6 (2024),  816–831
  3. Routes to Chaos in a Three-Dimensional Cancer Model

    Regul. Chaotic Dyn., 29:5 (2024),  777–793
  4. Numerical Study of Discrete Lorenz-Like Attractors

    Regul. Chaotic Dyn., 29:1 (2024),  78–99
  5. On 1:3 Resonance Under Reversible Perturbations of Conservative Cubic Hénon Maps

    Regul. Chaotic Dyn., 27:2 (2022),  198–216
  6. On methods for verification of the pseudohyperbolicity of strange attractors

    Izvestiya VUZ. Applied Nonlinear Dynamics, 29:1 (2021),  160–185
  7. On homoclinic attractors of three-dimensional flows

    Izvestiya VUZ. Applied Nonlinear Dynamics, 28:3 (2020),  231–258
  8. Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion

    Trudy Mat. Inst. Steklova, 308 (2020),  135–151
  9. Mathematical theory of dynamical chaos and its applications: Review. Part 2. Spiral chaos of three-dimensional flows

    Izvestiya VUZ. Applied Nonlinear Dynamics, 27:5 (2019),  7–52
  10. On the classification of homoclinic attractors of three-dimensional flows

    Zhurnal SVMO, 21:4 (2019),  443–459
  11. The asymmetric Lorenz attractor as an example of a new pseudohyperbolic attractor of three-dimensional systems

    Zhurnal SVMO, 20:2 (2018),  187–198
  12. Regular and chaotic dynamics in the rubber model of a Chaplygin top

    Nelin. Dinam., 13:2 (2017),  277–297
  13. Spiral chaos in Lotka-Volterra like models

    Zhurnal SVMO, 19:2 (2017),  13–24
  14. Bifurcations and chaos in the dynamics of two point vortices in an acoustic wave

    Int. J. Bifurcation Chaos Appl. Sci. Eng., 26:4 (2016),  1650063–13
  15. Dynamics of the Suslov problem in a gravitational field: reversal and strange attractors

    Nelin. Dinam., 12:2 (2016),  263–287
  16. Scenarios of transition to chaos in the nonholonomic model of a Chaplygin top

    Nelin. Dinam., 12:2 (2016),  235–250
  17. Spiral Chaos in the Nonholonomic Model of a Chaplygin Top

    Regul. Chaotic Dyn., 21:7-8 (2016),  939–954
  18. Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top

    Regul. Chaotic Dyn., 21:7-8 (2016),  885–901
  19. Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra?

    J. Geom. Phys., 87 (2015),  61–75
  20. Sequential Dynamics in the Motif of Excitatory Coupled Elements

    Regul. Chaotic Dyn., 20:6 (2015),  701–715
  21. Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors

    Regul. Chaotic Dyn., 20:5 (2015),  605–626
  22. Regular and chaotic attractors in the nonholonomic model of Chapygin’s ball

    Nelin. Dinam., 10:3 (2014),  361–380
  23. Bifurcations and chaos in the problem of the motion of two point vortices in an acoustic wave

    Nelin. Dinam., 10:3 (2014),  329–343
  24. The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top

    Regul. Chaotic Dyn., 19:6 (2014),  718–733
  25. Nonlinear dynamics of the rattleback: a nonholonomic model

    UFN, 184:5 (2014),  493–500
  26. Chaotic dynamics phenomena in the rubber rock-n-roller on a plane problem

    Nelin. Dinam., 9:2 (2013),  309–325
  27. Integrability and stochastic behavior in some nonholonomic dynamics problems

    Nelin. Dinam., 9:2 (2013),  257–265
  28. Topological monodromy in nonholonomic systems

    Nelin. Dinam., 9:2 (2013),  203–227
  29. Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone

    Regul. Chaotic Dyn., 18:5 (2013),  521–538
  30. Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane

    Regul. Chaotic Dyn., 18:5 (2013),  508–520
  31. On some new aspects of Celtic stone chaotic dynamics

    Nelin. Dinam., 8:3 (2012),  507–518

  32. Mixed dynamics: elements of theory and examples

    Izvestiya VUZ. Applied Nonlinear Dynamics, 32:6 (2024),  722–765
  33. In Honor of Sergey Gonchenko and Vladimir Belykh

    Regul. Chaotic Dyn., 29:1 (2024),  1–5
  34. 70 years of sergey v. gonchenko

    Izvestiya VUZ. Applied Nonlinear Dynamics, 31:3 (2023),  247–248
  35. To the 75th anniversary of Vyacheslav Zigmundovich Grines

    Zhurnal SVMO, 23:4 (2021),  472–476


© Steklov Math. Inst. of RAS, 2025