RUS  ENG
Full version
PEOPLE

Tolstonogov Alexander Alexandrovich

Publications in Math-Net.Ru

  1. A prox-regular sweeping process coupled with a maximal monotone differential inclusion

    Izv. RAN. Ser. Mat., 89:5 (2025),  181–232
  2. A coupled system consisting of an evolution inclusion with maximal monotone operators and a prox-regular sweeping process

    Mat. Sb., 216:6 (2025),  107–137
  3. Relaxation in an optimal control problem described by a coupled system with maximal monotone operators

    Sibirsk. Mat. Zh., 66:2 (2025),  287–315
  4. Evolution inclusions with state-dependent maximal monotone operators

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  241–254
  5. Existence and relaxation of solutions for a differential inclusion with maximal monotone operators and perturbations

    Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023),  65–68
  6. Comparison theorems for evolution inclusions with maximal monotone operators. $L^2$-theory

    Mat. Sb., 214:6 (2023),  110–135
  7. Distances between maximal monotone operators

    Sibirsk. Mat. Zh., 64:4 (2023),  815–829
  8. The $g$-convergence of maximal monotone Nemytskii operators

    Sibirsk. Mat. Zh., 63:6 (2022),  1369–1381
  9. Maximal monotonicity of a Nemytskii operator

    Funktsional. Anal. i Prilozhen., 55:3 (2021),  51–61
  10. A multivalued history-dependent operator and implicit evolution inclusions. II

    Sibirsk. Mat. Zh., 62:4 (2021),  917–935
  11. A multivalued history-dependent operator and implicit evolution inclusions. I

    Sibirsk. Mat. Zh., 62:3 (2021),  668–678
  12. Differential Inclusions with Mixed Semicontinuity Properties in a Banach Space

    Funktsional. Anal. i Prilozhen., 54:3 (2020),  48–62
  13. Bogolyubov's theorem for a controlled system related to a variational inequality

    Izv. RAN. Ser. Mat., 84:6 (2020),  165–196
  14. Polyhedral multivalued mappings: properties and applications

    Sibirsk. Mat. Zh., 61:2 (2020),  428–452
  15. Differential Inclusions in a Banach Space with Composite Right-Hand Side

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020),  212–222
  16. Densities of measures as an alternative to derivatives for measurable inclusions

    Funktsional. Anal. i Prilozhen., 53:4 (2019),  52–62
  17. Local existence conditions for sweeping process solutions

    Mat. Sb., 210:9 (2019),  107–128
  18. Space of continuous set-valued mappings with closed unbounded values

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  200–208
  19. Existence and relaxation of solutions to differential inclusions with unbounded right-hand side in a Banach space

    Sibirsk. Mat. Zh., 58:4 (2017),  937–953
  20. Solutions of evolution inclusions generated by a difference of subdifferentials

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015),  236–251
  21. The variational stability of an optimal control problem for Volterra-type equations

    Sibirsk. Mat. Zh., 55:4 (2014),  818–839
  22. Differential inclusions with unbounded right-hand side. Existence and relaxation theorems

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:3 (2014),  246–262
  23. Variational stability of optimal control problems involving subdifferential operators

    Mat. Sb., 202:4 (2011),  123–160
  24. Mosco convergence of integral functionals and its applications

    Mat. Sb., 200:3 (2009),  119–146
  25. Control systems of subdifferential type depending on a parameter

    Izv. RAN. Ser. Mat., 72:5 (2008),  149–188
  26. Relaxation in control systems of subdifferential type

    Izv. RAN. Ser. Mat., 70:1 (2006),  129–162
  27. Bogolyubov's theorem under constraints generated by a lower semicontinuous differential inclusion

    Mat. Sb., 196:2 (2005),  117–138
  28. The bang-bang principle for controlled systems of subdifferential type

    Trudy Inst. Mat. i Mekh. UrO RAN, 11:1 (2005),  189–200
  29. Properties of attainable sets of evolution inclusions and control systems of subdifferential type

    Sibirsk. Mat. Zh., 45:4 (2004),  920–945
  30. Bogolyubov's theorem under constraints generated by a controlled second-order evolution system

    Izv. RAN. Ser. Mat., 67:5 (2003),  177–206
  31. On solutions of an evolution control system depending on parameters

    Mat. Sb., 194:9 (2003),  113–140
  32. Approximation of attainable sets of an evolution inclusion of subdifferential type

    Sibirsk. Mat. Zh., 44:4 (2003),  883–904
  33. Strongly Exposed Points of Decomposable Sets in Spaces of Bochner Integrable Functions

    Mat. Zametki, 71:2 (2002),  298–306
  34. Properties of solutions to second order evolution control systems. II

    Sibirsk. Mat. Zh., 43:5 (2002),  1149–1167
  35. Properties of solutions to second order evolution control systems. I

    Sibirsk. Mat. Zh., 43:4 (2002),  907–923
  36. Properties of the set of admissible “state-control” pairs for first-order evolution control systems

    Izv. RAN. Ser. Mat., 65:3 (2001),  201–224
  37. Existence of an optimal control without convexity assumptions in a first-order evolution system

    Mat. Sb., 192:9 (2001),  125–142
  38. A theorem of existence of an optimal control for the Goursat–Darboux problem without convexity assumptions

    Izv. RAN. Ser. Mat., 64:4 (2000),  163–182
  39. Relaxation in non-convex optimal control problems described by first-order evolution equations

    Mat. Sb., 190:11 (1999),  135–160
  40. $L_p$-continuous selectors of fixed points of multivalued mappings with decomposable values. III. Applications

    Sibirsk. Mat. Zh., 40:6 (1999),  1380–1396
  41. $L_p$-continuous selectors of fixed points of multivalued mappings with decomposable values. II. Relaxation theorems

    Sibirsk. Mat. Zh., 40:5 (1999),  1167–1181
  42. $L_p$-continuous selectors of fixed points of multivalued mappings with decomposable values. I. Existence theorems

    Sibirsk. Mat. Zh., 40:3 (1999),  695–709
  43. Continuous selectors of multivalued mappings with nonclosed decomposable values, and their properties

    Dokl. Akad. Nauk, 352:3 (1997),  311–313
  44. Continuous selections of multivalued maps with non-convex non-closed decomposable values

    Mat. Sb., 187:5 (1996),  121–142
  45. Continuous selections for a family of nonconvex-valued mappings with noncompact domain

    Sibirsk. Mat. Zh., 35:3 (1994),  537–553
  46. On sublinear functionals defined on the space of Bochner integrable functions

    Sibirsk. Mat. Zh., 35:1 (1994),  194–206
  47. Solutions of evolution inclusions. II

    Sibirsk. Mat. Zh., 33:4 (1992),  163–174
  48. Solutions of evolution inclusions. I

    Sibirsk. Mat. Zh., 33:3 (1992),  161–174
  49. Extremal selectors of multivalued mappings and the “bang-bang” principle for evolution inclusions

    Dokl. Akad. Nauk SSSR, 317:3 (1991),  589–593
  50. Properties of integral solutions of differential inclusions with $m$-accretive operators

    Mat. Zametki, 49:6 (1991),  119–131
  51. Joint continuous selections of multivalued mappings with nonconvex values, and their applications

    Mat. Sb., 182:7 (1991),  946–969
  52. Continuous selectors and properties of solutions of differential inclusions with $m$-accretive operators

    Dokl. Akad. Nauk SSSR, 315:5 (1990),  1035–1039
  53. Scorza–Dragoni's theorem for multi-valued mappings with variable domain of definition

    Mat. Zametki, 48:5 (1990),  109–120
  54. Solutions of a differential inclusion with an unbounded right-hand side

    Sibirsk. Mat. Zh., 29:5 (1988),  212–225
  55. Theorem on continuous extension of a multivalued function and its applications

    Mat. Zametki, 42:4 (1987),  581–593
  56. Integral funnel equation of a differential inclusion in a Banach space and properties of its solutions

    Dokl. Akad. Nauk SSSR, 276:5 (1984),  1074–1078
  57. Properties of the space of proper functions

    Mat. Zametki, 35:6 (1984),  803–812
  58. On solutions of a differential inclusion with lower semicontinuous nonconvex right-hand side in a Banach space

    Mat. Sb. (N.S.), 125(167):2(10) (1984),  199–230
  59. The solution set of a differential inclusion in a Banach space. II

    Sibirsk. Mat. Zh., 25:1 (1984),  159–173
  60. The solution set of a differential inclusion in a Banach space. I

    Sibirsk. Mat. Zh., 24:6 (1983),  144–159
  61. A dependence on a parameter of the solution of a differential inclusion with nonconvex right-hand side

    Differ. Uravn., 18:9 (1982),  1559–1570
  62. Equation of the solution funnel of a differential inclusion

    Mat. Zametki, 32:6 (1982),  841–852
  63. On the structure of the solution set for differential inclusions in a Banach space

    Mat. Sb. (N.S.), 118(160):1(5) (1982),  3–18
  64. On density and co-density of the solution set of a differential inclusion in a Banach space

    Dokl. Akad. Nauk SSSR, 261:2 (1981),  293–296
  65. On comparison theorems for differential inclusions in locally convex space. II. Properties of solutions

    Differ. Uravn., 17:6 (1981),  1016–1024
  66. On comparison theorems for differential inclusions in locally convex space. I. Existence of solutions

    Differ. Uravn., 17:4 (1981),  651–659
  67. Differential inclusions in a Banach space with nonconvex right-hand side. Existence of solutions

    Sibirsk. Mat. Zh., 22:4 (1981),  182–198
  68. On functional-differential inclusions in a Banach space with a nonconvex right-hand side

    Dokl. Akad. Nauk SSSR, 254:1 (1980),  45–49
  69. On properties of solutions of differential inclusions in a Banach space

    Dokl. Akad. Nauk SSSR, 248:1 (1979),  42–46
  70. On differential inclusions in Banach spaces and continuous selections

    Dokl. Akad. Nauk SSSR, 244:5 (1979),  1088–1092
  71. Properties of spaces of sublinear operators

    Sibirsk. Mat. Zh., 20:4 (1979),  792–806
  72. Representation of sublinear operators by multivalued mappings

    Dokl. Akad. Nauk SSSR, 234:2 (1977),  294–297
  73. Support functions of convex compacta

    Mat. Zametki, 22:2 (1977),  203–213
  74. Some properties of spaces of sublinear functionals

    Sibirsk. Mat. Zh., 18:2 (1977),  429–443
  75. On the theorems of Radon–Nikodym and A. A. Ljapunov for a multivalued measure

    Dokl. Akad. Nauk SSSR, 225:5 (1975),  1023–1026
  76. The maximum principle for differential inclusions

    Differ. Uravn., 11:10 (1975),  1838–1842
  77. Topological structure of continuous set-valued mappings

    Sibirsk. Mat. Zh., 16:4 (1975),  837–852
  78. The properties of the maximum function with constraints

    Zh. Vychisl. Mat. Mat. Fiz., 10:3 (1970),  597–606

  79. In memory of Evgenii Leonidovich Tonkov (27.06.1940–28.09.2014)

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 4,  146–154
  80. Workshop “Contemporary Problems of the Theory of Functions”

    Uspekhi Mat. Nauk, 43:4(262) (1988),  250–251
  81. VI Всесоюзная конференция по качественной теории дифференциальных уравнений

    Differ. Uravn., 23:4 (1987),  729–730
  82. VI All-Union School on Theory of Operators in Functional Spaces

    Uspekhi Mat. Nauk, 37:2(224) (1982),  268–269


© Steklov Math. Inst. of RAS, 2025