RUS  ENG
Full version
PEOPLE

Starik Aleksandr Mikhailovich

Publications in Math-Net.Ru

  1. Numerical analysis of hydrogen sulphide conversion to hydrogen during its pyrolysis and partial oxidation

    Fizika Goreniya i Vzryva, 54:2 (2018),  15–26
  2. Numerical analysis of combustion of a hydrogen–air mixture in the model combustor of perspective ramjets during activation of molecules with O$_2$ resonant laser radiation

    Fizika Goreniya i Vzryva, 53:3 (2017),  3–17
  3. Analysis of the mechanisms of ignition and combustion of $i$-$\mathrm{C}_8\mathrm{H}_{18}$$\mathrm{H}_2$ and $n$-$\mathrm{C}_{10}\mathrm{H}_{22}$$\mathrm{H}_2$ composite propellants in air

    Fizika Goreniya i Vzryva, 52:6 (2016),  13–25
  4. Specific features of ignition and combustion of composite fuels containing aluminum nanoparticles (Review)

    Fizika Goreniya i Vzryva, 51:2 (2015),  64–91
  5. On mechanisms of formation of environmentally harmful compounds in homogeneous combustors

    Fizika Goreniya i Vzryva, 49:5 (2013),  17–33
  6. Kinetics of oxidation and combustion of complex hydrocarbon fuels: Aviation kerosene

    Fizika Goreniya i Vzryva, 49:4 (2013),  12–30
  7. Kinetic mechanism of propane ignition and combustion in air

    Fizika Goreniya i Vzryva, 47:3 (2011),  3–19
  8. On kinetic mechanisms of $n$-decane oxidation

    Fizika Goreniya i Vzryva, 47:2 (2011),  3–22
  9. Syngas oxidation mechanism

    Fizika Goreniya i Vzryva, 46:5 (2010),  3–19
  10. Enhancement of combustion of a hydrogen-air mixture by excitation of O$_2$ molecules to the $a^1\Delta_g$ state state

    Fizika Goreniya i Vzryva, 44:4 (2008),  3–12
  11. Initiation of combustion of a CH$_4$–O$_2$ mixture in a supersonic flow with excitation of O$_2$ molecules by an electric discharge

    Fizika Goreniya i Vzryva, 44:3 (2008),  3–16
  12. Numerical study of formation of a detonation wave in a supersonic flow over a wedge by an H$_2$–O$_2$ mixture with nonequilibrium excitation of molecular vibrations of reagents

    Fizika Goreniya i Vzryva, 42:1 (2006),  78–86
  13. Activation of chain processes in combustible mixtures by laser excitation of molecular vibrations of reactants

    Fizika Goreniya i Vzryva, 41:4 (2005),  29–38
  14. Possibility of initiation of combustion of CH$_4$–O$_2$ (air) mixtures with laser-induced excitation of O$_2$ molecules

    Fizika Goreniya i Vzryva, 40:5 (2004),  3–15
  15. Kinetic mechanisms of ignition of isooctane–air mixtures

    Fizika Goreniya i Vzryva, 40:1 (2004),  42–63
  16. Formation kinetics of sulfur-bearing compounds in combustion of hydrocarbon fuels in air

    Fizika Goreniya i Vzryva, 38:6 (2002),  3–16
  17. Kinetics of ion formation in the volumetric reaction of methane with air

    Fizika Goreniya i Vzryva, 38:3 (2002),  3–20
  18. Numerical analysis of combustion kinetics for hydrogen–air mixtures with NH$_3$, CH$_4$, and C$_2$Н$_6$

    Fizika Goreniya i Vzryva, 36:3 (2000),  31–38
  19. Simulation of binary condensation of $\mathrm{H}_2\mathrm{O}/\mathrm{H}_2\mathrm{SO}_4$ in plumes of jet engines using Euler’s method of fractions

    TVT, 38:1 (2000),  81–90
  20. Investigation of the dynamics of formation of environmentally harmful gases in elements of a gas turbine engine

    TVT, 37:3 (1999),  495–503
  21. Analysis of the singularities of the kinetics of combustion of the products of thermal destruction of $n$-octane mixed with air

    TVT, 37:2 (1999),  294–305
  22. Numerical investigation of nonequilibrium photochemical processes in the wake of subsonic aircraft

    TVT, 36:1 (1998),  79–93
  23. Changes in the refractive index of a molecular gas in the field of resonant radiation when spectral lines overlap

    Kvantovaya Elektronika, 24:6 (1997),  565–570
  24. On mechanisms of promotion of detonation combustion for $\mathrm{H}_2$ + air mixtures behind shock waves by excitation of molecular vibrations of initial gases

    Dokl. Akad. Nauk, 350:6 (1996),  757–762
  25. Numerical study of detonation in CH$_4$ (H$_2$) + air mixtures behind shock waves

    Fizika Goreniya i Vzryva, 32:1 (1996),  94–110
  26. The effect of vibrational excitation of molecules on dynamics of detonation combustion of $\mathrm{H}_2$ + air mixture behind shock waves

    TVT, 34:5 (1996),  737–750
  27. Effect of excitation of molecular vibrations on the dynamics of combustion of an H$_2$ + O$_2$ mixture behind a detonation shockwave

    Prikl. Mekh. Tekh. Fiz., 36:6 (1995),  25–34
  28. The influence of nonequilibrium effects in elements of hypersonic ramjet engines on the formation of harmful gas components

    TVT, 33:2 (1995),  279–287
  29. Numerical analysis of the energy characteristics of gasdynamic lasers utilizing hydrocarbon fuel combustion powers

    TVT, 33:1 (1995),  121–133
  30. On possibility of acceleration of the combustion $\mathrm{H}_2+\mathrm{O}_2$ mixture under excitation of vibrational states of motion of molecules

    Dokl. Akad. Nauk, 336:5 (1994),  617–622
  31. Kinetics of combustion of H$_2$ + O$_2$ mixture with participation of vibrationally excited molecules

    Fizika Goreniya i Vzryva, 30:5 (1994),  3–15
  32. Modeling of the dynamics of the change in the index of refraction during resonance interaction of radiation with vibrational-rotational transitions

    Prikl. Mekh. Tekh. Fiz., 35:1 (1994),  21–29
  33. Characteristics of the changes in the refractive index due to interaction of a radiation pulse with an inverted medium

    Kvantovaya Elektronika, 21:4 (1994),  365–370
  34. Investigation of the effect of vibrational excitation of molecules on the kinetics of combustion of an $\mathrm{H}_2+\mathrm{O}_2$ mixture

    TVT, 32:2 (1994),  222–229
  35. Modeling of unsteady-state processes in the starting of an axisymmetric contoured nozzle

    TVT, 32:1 (1994),  63–68
  36. Modeling of diffusion and heat conduction effects on the variation of hydrodynamic parameters during excitation of molecular oscillations by resonance radiation

    Prikl. Mekh. Tekh. Fiz., 34:1 (1993),  3–11
  37. The choice of kinetic pattern in describing detonation in the $\mathrm{H}_2 +$ air mixture behind shock waves

    TVT, 31:2 (1993),  292–301
  38. Influence of macroscopic transport processes on the change in gas-dynamic parameters produced by a pulse of resonance radiation

    Dokl. Akad. Nauk, 322:4 (1992),  674–680
  39. Formation of a nonequilibrium energy distribution over vibrational degrees of freedom of the H$_2$O molecule as water vapor expands in a supersonic nozzle

    Prikl. Mekh. Tekh. Fiz., 33:4 (1992),  32–42
  40. Numerical analysis of the characteristics of thermally pumped flow-through $\mathrm{N}_2$$\mathrm{DCl}$-mixture lasers

    TVT, 30:1 (1992),  163–172
  41. CHARACTERISTICS OF PROPAGATION OF IRRADIATION PULSE WITH LAMBDA=2.8-3.3 MU-M WAVE-LENGTH IN STEAM-CONTAINING MEDIA

    Zhurnal Tekhnicheskoi Fiziki, 61:3 (1991),  41–48
  42. DESCRIPTION OF HYDRODYNAMIC MEDIUM MOVEMENT UNDER THE EFFECT OF RESONANCE IRRADIATION

    Zhurnal Tekhnicheskoi Fiziki, 61:3 (1991),  33–40
  43. Some self-focusing mechanisms for absorption on rotational transitions

    Prikl. Mekh. Tekh. Fiz., 32:3 (1991),  3–11
  44. Numerical analysis of the characteristics of a laser with mixing of $\mathrm{H}_2$ and $\mathrm{HCl}$ components and excitation of molecular hydrogen by electroionization

    TVT, 29:5 (1991),  872–877
  45. Mechanisms of self-focusing in the interaction of laser radiation with a gaseous medium

    Kvantovaya Elektronika, 17:4 (1990),  501–506
  46. Особенности распространения ударных волн в колебательно-неравновесном газе при неоднородном возбуждении

    TVT, 28:4 (1990),  816–820
  47. Measurement of molecular constants of the vibrational-rotational transition $001(6_{33})\to020(5_{50})$ in water vapour behind the shock wave

    Dokl. Akad. Nauk SSSR, 309:1 (1989),  82–85
  48. Nonstationary self-focusing at the propagation of $\lambda_I=2{,}8\mu$ radiation through damp atmosphere

    Dokl. Akad. Nauk SSSR, 308:3 (1989),  610–614
  49. On mechanisms of self-focusing during the propagation of laser radiation with wavelength $\lambda_I\approx2{,}8$ mkm in humid atmosphere

    Dokl. Akad. Nauk SSSR, 304:5 (1989),  1073–1077
  50. Discussion of the effect of the intensity of radiation and the parameters of a medium on the change in the refractive index accompanying the absorption of HF-laser radiation by water vapor

    Prikl. Mekh. Tekh. Fiz., 30:4 (1989),  10–15
  51. Numerical-simulation of wall reflection of shock-waves in a relaxing gas

    TVT, 27:5 (1989),  962–968
  52. Effect of nozzle shape on the lasing spectrum of a gas-dynamic laser on the mixture $\mathrm{H}_2$$\mathrm{HCl}$

    TVT, 27:3 (1989),  588–593
  53. Shock-wave reflection from wall with hole in relaxing gas

    TVT, 27:1 (1989),  122–128
  54. CHANGE OF THE REFRACTIVE-INDEX DURING RADIATION DISTRIBUTION THROUGH RESONANCE-ABSORBING GAS MEDIA IN THE KINETIC COOLING REGIME

    Zhurnal Tekhnicheskoi Fiziki, 58:3 (1988),  567–576
  55. Molecular-gas cooling in a resonant radiation field with line overlap

    Prikl. Mekh. Tekh. Fiz., 29:2 (1988),  7–14
  56. Mechanisms of change in the refractive index during propagation of λ = 2.8 μm radiation in a damp atmosphere

    Kvantovaya Elektronika, 15:7 (1988),  1448–1456
  57. Cooling of a molecular gas in the course of amplification of light

    Kvantovaya Elektronika, 15:2 (1988),  295–302
  58. On the problem of light pulse propagation in resonance absorbing gaseous medium

    Dokl. Akad. Nauk SSSR, 293:6 (1987),  1364–1369
  59. Numerical investigation of the process of shock reflection from a wall with a slot hole

    Prikl. Mekh. Tekh. Fiz., 28:6 (1987),  112–118
  60. Numerical modeling of reflection of a shock-wave at a wall with an aperture

    TVT, 25:5 (1987),  967–974
  61. KINETIC WATER-VAPOR COOLING BY CO-LASER EMISSION

    Zhurnal Tekhnicheskoi Fiziki, 56:1 (1986),  97–104
  62. Influence of radiation intensity and parameters of the medium on the depth of cooling and the change in the index of refraction during the adsorption of radiation with $\lambda$ = 9.2–10.6 $\mu$m by water vapor

    Prikl. Mekh. Tekh. Fiz., 27:6 (1986),  9–16
  63. Thermal effects of the absorption of CO2 laser radiation by water vapor

    Kvantovaya Elektronika, 13:3 (1986),  551–558
  64. Selection of a calculation model for nozzle flow in high-temperature combustionproduct gasdynamic lasers

    Kvantovaya Elektronika, 13:1 (1986),  86–94
  65. Modeling of flows of the products of combustion of hydrocarbon fuels in an impulsive setup of the explosive type

    Fizika Goreniya i Vzryva, 21:6 (1985),  34–41
  66. Propagation of a radiation pulse with wavelength $\lambda$ = 10.6 $\mu$m in amplifying media

    Prikl. Mekh. Tekh. Fiz., 26:2 (1985),  30–36
  67. KINETICS OF GAS-COOLING FROM DIATOMIC DIPOLE MOLECULES

    Zhurnal Tekhnicheskoi Fiziki, 54:8 (1984),  1631–1634
  68. Resonance radiation cooling of a diatomic molecule gas flux

    Prikl. Mekh. Tekh. Fiz., 25:5 (1984),  8–16
  69. Numerical investigation of the propagation of a pulse of radiation with $\lambda$ =10.6 $\mu$m through absorbing media

    Prikl. Mekh. Tekh. Fiz., 25:3 (1984),  14–19
  70. Carbon dioxide gasdynamic laser with optical feedback utilizing cascade transitions

    Kvantovaya Elektronika, 11:4 (1984),  849–851
  71. Question of determining the relaxation time in kinetic cooling of a moving gas

    Prikl. Mekh. Tekh. Fiz., 23:2 (1982),  17–22
  72. Analysis of hydrogen halide lasers

    Kvantovaya Elektronika, 9:2 (1982),  315–322
  73. Vibrational energy transfer in systems with optical feedback

    Kvantovaya Elektronika, 9:1 (1982),  36–43
  74. Problem of obtaining a population inversion in vibrational levels of polyatomic dipole molecules behind a shock-wave front

    Prikl. Mekh. Tekh. Fiz., 22:5 (1981),  54–61
  75. Investigation of the characteristics of an explosion-type gasdynamic laser utilizing the combustion products of acetylene

    Kvantovaya Elektronika, 8:5 (1981),  1002–1011
  76. Theoretical investigation of the characteristics of an H2-HCl gasdynamic laser

    Kvantovaya Elektronika, 8:5 (1981),  972–980
  77. Vibrationally nonequilibrium flow of a CO$_2$–N$_2$–O$_2$–Н$_2$O mixture in a wedge nozzle

    Prikl. Mekh. Tekh. Fiz., 21:4 (1980),  41–50
  78. Resonance absorption of emission (10.6 $\mu$m) in CO$_2$–N$_2$ mixtures behind a shock front

    Prikl. Mekh. Tekh. Fiz., 21:3 (1980),  20–23
  79. Effect of weak flow perturbations on the gain of a gasdynamic laser

    Kvantovaya Elektronika, 6:5 (1979),  911–916


© Steklov Math. Inst. of RAS, 2025