RUS  ENG
Full version
PEOPLE

Tyurin Nikolai Andreevich

Publications in Math-Net.Ru

  1. Examples of Hamiltonian-minimal Lagrangian submanifolds in $\operatorname{Gr}(r, n)$

    Izv. RAN. Ser. Mat., 89:2 (2025),  146–160
  2. Special Bohr–Sommerfeld geomery

    Uspekhi Mat. Nauk, 80:2(482) (2025),  123–164
  3. Lagrangian geometry of the Grassmannian $\mathrm{Gr}(1, n)$

    Mat. Zametki, 116:6 (2024),  998–1005
  4. Symplectic reduction and Lagrangian submanifolds of $\operatorname{Gr}(1, n)$

    Mat. Sb., 215:10 (2024),  167–182
  5. Special Bohr–Sommerfeld geometry: variations

    Izv. RAN. Ser. Mat., 87:3 (2023),  184–205
  6. Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$

    Trudy Mat. Inst. Steklova, 320 (2023),  311–323
  7. On the Lagrangian Geometry of the Tangent Bundle of a Toric Variety

    Mat. Zametki, 111:4 (2022),  638–640
  8. Lagrangian Geometry of Algebraic Manifolds

    Phys. Part. Nucl. Lett., 19 (2022),  337–342
  9. Collective obituary. Sergey A. Kuleshov (24.12.1962 – 15.05.2021)

    Math. Ed., 2021, no. 2(98),  2–4
  10. Mironov Lagrangian cycles in algebraic varieties

    Mat. Sb., 212:3 (2021),  128–138
  11. Examples of Mironov cycles in Grassmannians

    Sibirsk. Mat. Zh., 62:2 (2021),  457–465
  12. On the Kählerization of the Moduli Space of Bohr–Sommerfeld Lagrangian Submanifolds

    Mat. Zametki, 107:6 (2020),  945–947
  13. The moduli space of $D$-exact Lagrangian submanifolds

    Sibirsk. Mat. Zh., 60:4 (2019),  907–921
  14. Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties

    Trudy Mat. Inst. Steklova, 307 (2019),  291–305
  15. Special Bohr–Sommerfeld Lagrangian submanifolds of algebraic varieties

    Izv. RAN. Ser. Mat., 82:3 (2018),  170–191
  16. Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations

    Uspekhi Mat. Nauk, 72:3(435) (2017),  131–169
  17. Special Bohr–Sommerfeld Lagrangian submanifolds

    Izv. RAN. Ser. Mat., 80:6 (2016),  274–293
  18. On Lagrangian Spheres in the Flag Variety $F^3$

    Mat. Zametki, 98:2 (2015),  314–317
  19. Pseudotoric structures on a hyperplane section of a toric manifold

    TMF, 182:2 (2015),  195–212
  20. Pseudotoric Structures and Lagrangian Spheres in the Flag Variety $F^3$

    Mat. Zametki, 96:3 (2014),  476–479
  21. Pseudotoric structures on toric symplectic manifolds

    TMF, 175:2 (2013),  147–158
  22. Lifts of Lagrangian Tori

    Mat. Zametki, 91:5 (2012),  784–786
  23. Nonstandard Lagrangian tori and pseudotoric structures

    TMF, 171:2 (2012),  321–325
  24. Chekanov tori and pseudotoric structures

    Uspekhi Mat. Nauk, 66:1(397) (2011),  185–186
  25. Special Lagrangian fibrations on the flag variety $F^3$

    TMF, 167:2 (2011),  193–205
  26. Nontoric Foliations by Lagrangian Tori of Toric Fano Varieties

    Mat. Zametki, 87:1 (2010),  48–59
  27. Pseudotoric Lagrangian fibrations of toric and nontoric Fano varieties

    TMF, 162:3 (2010),  307–333
  28. Birational Maps and Special Lagrangian Fibrations

    Trudy Mat. Inst. Steklova, 264 (2009),  209–211
  29. Lagrangian tori in the projective plane

    TMF, 158:1 (2009),  3–22
  30. Universal Maslov class of a Bohr–Sommerfeld Lagrangian embedding into a pseudo-Einstein manifold

    TMF, 150:2 (2007),  325–337
  31. Algebraic Lagrangian geometry: three geometric observations

    Izv. RAN. Ser. Mat., 69:1 (2005),  179–194
  32. Existence theorem for the moduli space of Bohr–Sommerfeld Lagrangian cycles

    Uspekhi Mat. Nauk, 60:3(363) (2005),  179–180
  33. Space of Hermitian Triples and Ashtekar–Isham Quantization

    TMF, 139:1 (2004),  145–157
  34. Irreducibility of the ALG(a)-Quantization

    Trudy Mat. Inst. Steklova, 241 (2003),  265–271
  35. The space of Hermitian triples: local geometry

    Izv. RAN. Ser. Mat., 66:4 (2002),  205–224
  36. Dynamical correspondence in algebraic Lagrangian geometry

    Izv. RAN. Ser. Mat., 66:3 (2002),  175–196
  37. Instantons and monopoles

    Uspekhi Mat. Nauk, 57:2(344) (2002),  85–138
  38. The correspondence principle in Abelian Lagrangian geometry

    Izv. RAN. Ser. Mat., 65:4 (2001),  191–204
  39. Spaces of Hermitian triples and the Seiberg–Witten equations

    Izv. RAN. Ser. Mat., 65:1 (2001),  197–224
  40. Holomorphy and semiholomorphy

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 70 (2001),  236–254
  41. Abelian monopoles: the case of a positive-dimensional moduli space

    Izv. RAN. Ser. Mat., 64:1 (2000),  197–210
  42. Abelian monopoles and complex geometry

    Mat. Zametki, 65:3 (1999),  420–428
  43. Semiholomorphic structures

    Izv. RAN. Ser. Mat., 62:5 (1998),  207–224
  44. Necessary and sufficient conditions for a deformation of a B-monopole into an instanton

    Izv. RAN. Ser. Mat., 60:1 (1996),  211–224

  45. Andrei Igorevich Shafarevich (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 79:3(477) (2024),  185–188
  46. Igor Rostislavovich Shafarevich (on the centenary of his birthday)

    Uspekhi Mat. Nauk, 78:6(474) (2023),  187–198
  47. Vladimir Aleksandrovich Voevodsky (obituary)

    Uspekhi Mat. Nauk, 73:3(441) (2018),  157–168
  48. Letter to the editors

    Izv. RAN. Ser. Mat., 68:3 (2004),  219–220
  49. Preface

    Trudy Mat. Inst. Steklova, 246 (2004),  7–9
  50. Andrei Nikolaevich Tyurin (obituary)

    Uspekhi Mat. Nauk, 58:3(351) (2003),  176–182


© Steklov Math. Inst. of RAS, 2025