RUS  ENG
Full version
PEOPLE

Keselman Vladimir Mikhailovich

Publications in Math-Net.Ru

  1. Some criteria of capacitive type of a noncompact Riemannian manifold

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 2,  61–64
  2. The concept and criteria of the capacitive type of the non-compact Riemannian manifold based on the generalized capacity

    Mathematical Physics and Computer Simulation, 22:2 (2019),  21–32
  3. On a criterion of conformal parabolicity of a Riemannian manifold

    Mat. Sb., 206:3 (2015),  57–90
  4. The relative isoperimetric inequality on a conformally parabolic manifold with boundary

    Mat. Sb., 202:7 (2011),  117–134
  5. The relative isoperimetric inequality on a conformally parabolic manifold with boundary

    Uspekhi Mat. Nauk, 65:2(392) (2010),  195–196
  6. The isoperimetric inequality on conformally parabolic manifolds

    Mat. Sb., 200:1 (2009),  3–36
  7. On the isoperimetric inequality on conformally parabolic manifolds

    Uspekhi Mat. Nauk, 62:6(378) (2007),  177–178
  8. Isoperimetric inequality on conformally hyperbolic manifolds

    Mat. Sb., 194:4 (2003),  29–48
  9. Fundamental frequency and conformal type of a Riemannian manifold

    Uspekhi Mat. Nauk, 57:2(344) (2002),  195–196
  10. The Isoperimetric Inequality on Manifolds of Conformally Hyperbolic Type

    Funktsional. Anal. i Prilozhen., 35:2 (2001),  12–23
  11. The isoperimetric inequality on sub-Riemannian manifolds of conformally-hyperbolic type

    Uspekhi Mat. Nauk, 55:6(336) (2000),  137–138
  12. The conformal type and isoperimetric dimension of sub-Riemannian manifolds

    Uspekhi Mat. Nauk, 54:4(328) (1999),  171–172
  13. A canonical form for the isoperimetric inequality on manifolds of conformally hyperbolic type

    Uspekhi Mat. Nauk, 54:3(327) (1999),  165–166
  14. Conformal type and isoperimetric dimension of Riemannian manifolds

    Mat. Zametki, 63:3 (1998),  379–385
  15. On the Conformal Type of a Riemannian Manifold

    Funktsional. Anal. i Prilozhen., 30:2 (1996),  40–55
  16. Riemannian manifolds of $\alpha$-parabolic type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 4,  81–83
  17. Bernshtein's theorem for a surface with quasiconformal Gauss map

    Mat. Zametki, 35:3 (1984),  445–453

  18. Vladimir Antonovich Zorich (on his 80th birthday)

    Uspekhi Mat. Nauk, 73:5(443) (2018),  193–196
  19. Vladimir Mikhailovich Miklyukov (obituary)

    Uspekhi Mat. Nauk, 69:3(417) (2014),  173–176


© Steklov Math. Inst. of RAS, 2025