RUS  ENG
Full version
PEOPLE

Komech Aleksandr Il'ich

Publications in Math-Net.Ru

  1. Global attraction to solitons for $\mathrm{2D}$ Maxwell–Lorentz equations with spinning particle

    Algebra i Analiz, 35:5 (2023),  117–132
  2. Attractors of nonlinear Hamiltonian partial differential equations

    Uspekhi Mat. Nauk, 75:1(451) (2020),  3–94
  3. On global attractors and radiation damping for nonrelativistic particle coupled to scalar field

    Algebra i Analiz, 29:2 (2017),  34–58
  4. On the Crystal Ground State in the Schrödinger–Poisson Model with Point Ions

    Mat. Zametki, 99:6 (2016),  886–894
  5. On the mathematical work of Vladimir Savel'evich Buslaev

    Algebra i Analiz, 25:2 (2013),  3–36
  6. On the Titchmarsh Convolution Theorem for Distributions on the Circle

    Funktsional. Anal. i Prilozhen., 47:1 (2013),  26–32
  7. Global Attraction to Solitary Waves in Models Based on the Klein–Gordon Equation

    SIGMA, 4 (2008), 010, 23 pp.
  8. On a two-temperature problem for Klein–Gordon equation

    Teor. Veroyatnost. i Primenen., 50:4 (2005),  675–710
  9. Stabilization of interaction of a string with two nonlinear oscillators

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 3,  3–10
  10. Attractors of non-linear Hamiltonian one-dimensional wave equations

    Uspekhi Mat. Nauk, 55:1(331) (2000),  45–98
  11. On transitions to stationary states in some infinite-dimensional Hamiltonian systems

    Dokl. Akad. Nauk, 347:3 (1996),  309–311
  12. Ergodic properties of hyperbolic equations with mixing

    Teor. Veroyatnost. i Primenen., 41:3 (1996),  505–519
  13. On attractors and asymptotics to solutions in the nonlinear Lamb problem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 5,  80–88
  14. Stabilization of the interaction of a string with a nonlinear oscillator

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 6,  35–41
  15. Linear partial differential equations with constant coefficients

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 31 (1988),  127–261
  16. Kolmogorov equations corresponding to a two-dimensional stochastic Navier–Stokes system

    Tr. Mosk. Mat. Obs., 46 (1983),  3–43
  17. Individual and statistical solutions of the two-dimensional Euler system

    Dokl. Akad. Nauk SSSR, 261:4 (1981),  780–785
  18. On a stochastic Navier–Stokes system and the corresponding Kolmogorov equations

    Dokl. Akad. Nauk SSSR, 257:6 (1981),  1298–1301
  19. Weak solutions of the inverse Kolmogorov equation corresponding to the stochastic Navier–Stokes system

    Uspekhi Mat. Nauk, 36:3(219) (1981),  205–206
  20. Translationally homogeneous solutions of a stochastic Navier–Stokes system

    Dokl. Akad. Nauk SSSR, 246:5 (1979),  1037–1041
  21. Some mathematical problems of statistical hydromechanics

    Uspekhi Mat. Nauk, 34:5(209) (1979),  135–210
  22. Infinite-dimensional parabolic equations connected with stochastic partial differential equations

    Dokl. Akad. Nauk SSSR, 233:5 (1977),  769–772
  23. Equations with homogeneous kernels and Mellin transformation of generalized functions

    TMF, 27:2 (1976),  149–162
  24. Elliptic boundary value problems on manifolds with a piecewise smooth boundary

    Mat. Sb. (N.S.), 92(134):1(9) (1973),  89–134
  25. Elliptic boundary value problems for pseudodifferential operators on manifolds with conical points

    Mat. Sb. (N.S.), 86(128):2(10) (1971),  268–298

  26. Boris Rufimovich Vainberg (on his 80th birthday)

    Uspekhi Mat. Nauk, 74:1(445) (2019),  189–194
  27. Marko Iosifovich Vishik (obituary)

    Uspekhi Mat. Nauk, 68:2(410) (2013),  197–200
  28. Mark Iosifovich Vishik (on his 75th birthday)

    Uspekhi Mat. Nauk, 52:4(316) (1997),  225–232
  29. Inter-College School-Seminar “Differential Equations and Their Applications”

    Uspekhi Mat. Nauk, 42:5(257) (1987),  236–238


© Steklov Math. Inst. of RAS, 2025