|
|
Publications in Math-Net.Ru
-
Global attraction to solitons for $\mathrm{2D}$ Maxwell–Lorentz equations with spinning particle
Algebra i Analiz, 35:5 (2023), 117–132
-
Attractors of nonlinear Hamiltonian partial differential equations
Uspekhi Mat. Nauk, 75:1(451) (2020), 3–94
-
On global attractors and radiation damping for nonrelativistic particle coupled to scalar field
Algebra i Analiz, 29:2 (2017), 34–58
-
On the Crystal Ground State in the Schrödinger–Poisson Model with Point Ions
Mat. Zametki, 99:6 (2016), 886–894
-
On the mathematical work of Vladimir Savel'evich Buslaev
Algebra i Analiz, 25:2 (2013), 3–36
-
On the Titchmarsh Convolution Theorem for Distributions on the Circle
Funktsional. Anal. i Prilozhen., 47:1 (2013), 26–32
-
Global Attraction to Solitary Waves in Models Based on the Klein–Gordon Equation
SIGMA, 4 (2008), 010, 23 pp.
-
On a two-temperature problem for Klein–Gordon equation
Teor. Veroyatnost. i Primenen., 50:4 (2005), 675–710
-
Stabilization of interaction of a string with two nonlinear oscillators
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 3, 3–10
-
Attractors of non-linear Hamiltonian one-dimensional wave equations
Uspekhi Mat. Nauk, 55:1(331) (2000), 45–98
-
On transitions to stationary states in some infinite-dimensional
Hamiltonian systems
Dokl. Akad. Nauk, 347:3 (1996), 309–311
-
Ergodic properties of hyperbolic equations with mixing
Teor. Veroyatnost. i Primenen., 41:3 (1996), 505–519
-
On attractors and asymptotics to solutions in the nonlinear Lamb problem
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 5, 80–88
-
Stabilization of the interaction of a string with a nonlinear oscillator
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 6, 35–41
-
Linear partial differential equations with constant coefficients
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 31 (1988), 127–261
-
Kolmogorov equations corresponding to a two-dimensional stochastic Navier–Stokes system
Tr. Mosk. Mat. Obs., 46 (1983), 3–43
-
Individual and statistical solutions of the two-dimensional Euler system
Dokl. Akad. Nauk SSSR, 261:4 (1981), 780–785
-
On a stochastic Navier–Stokes system and the corresponding Kolmogorov equations
Dokl. Akad. Nauk SSSR, 257:6 (1981), 1298–1301
-
Weak solutions of the inverse Kolmogorov equation corresponding to the stochastic Navier–Stokes system
Uspekhi Mat. Nauk, 36:3(219) (1981), 205–206
-
Translationally homogeneous solutions of a stochastic Navier–Stokes system
Dokl. Akad. Nauk SSSR, 246:5 (1979), 1037–1041
-
Some mathematical problems of statistical hydromechanics
Uspekhi Mat. Nauk, 34:5(209) (1979), 135–210
-
Infinite-dimensional parabolic equations connected with stochastic partial differential equations
Dokl. Akad. Nauk SSSR, 233:5 (1977), 769–772
-
Equations with homogeneous kernels and Mellin transformation of generalized functions
TMF, 27:2 (1976), 149–162
-
Elliptic boundary value problems on manifolds with a piecewise smooth boundary
Mat. Sb. (N.S.), 92(134):1(9) (1973), 89–134
-
Elliptic boundary value problems for pseudodifferential operators on manifolds with conical points
Mat. Sb. (N.S.), 86(128):2(10) (1971), 268–298
-
Boris Rufimovich Vainberg (on his 80th birthday)
Uspekhi Mat. Nauk, 74:1(445) (2019), 189–194
-
Marko Iosifovich Vishik (obituary)
Uspekhi Mat. Nauk, 68:2(410) (2013), 197–200
-
Mark Iosifovich Vishik (on his 75th birthday)
Uspekhi Mat. Nauk, 52:4(316) (1997), 225–232
-
Inter-College School-Seminar “Differential Equations and Their Applications”
Uspekhi Mat. Nauk, 42:5(257) (1987), 236–238
© , 2025