RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Слипченко Сергей Олегович

Публикации в базе данных Math-Net.Ru

  1. Металлодиэлектрические зеркальные покрытия для квантовых каскадных лазеров с длиной волны излучения 4–5 мкм

    Квантовая электроника, 53:8 (2023),  641–644
  2. Мощные многомодовые полупроводниковые лазеры (λ = 976 нм) на основе асимметричных гетероструктур с расширенным волноводом и пониженной расходимостью излучения в перпендикулярной плоскости

    Квантовая электроника, 53:5 (2023),  374–378
  3. Диэлектрические высокоотражающие зеркальные покрытия для квантовых каскадных лазеров с длиной волны излучения 4 – 5 мкм

    Квантовая электроника, 53:5 (2023),  370–373
  4. Оптимизация параметров резонатора мощных полупроводниковых лазеров InGaAs/AlGaAs/GaAs (λ = 1060 нм) для эффективной работы при сверхвысоких импульсных токах накачки

    Квантовая электроника, 53:1 (2023),  17–24
  5. Источник мощного импульсного лазерного излучения (1060 нм) с высокой частотой следования импульсов на основе гибридной сборки линейки лазерных диодов и 2D массива оптотиристоров как высокоскоростного токового ключа

    Квантовая электроника, 53:1 (2023),  11–16
  6. Квазинепрерывные микролинейки мощных полупроводниковых лазеров (λ = 976 нм) с увеличенной длиной резонатора на основе асимметричных гетероструктур с широким волноводом

    Квантовая электроника, 53:1 (2023),  6–10
  7. Лазерные диоды (850 нм) на основе асимметричной AlGaAs/GaAs-гетероструктуры с объемной активной областью для генерации мощных субнаносекундных оптических импульсов

    Квантовая электроника, 53:1 (2023),  1–5
  8. Мощные лазерные диоды на основе InGaAs(Р)/Al(In)GaAs(P)/GaAs-гетероструктур с низкими внутренними оптическими потерями

    Квантовая электроника, 52:12 (2022),  1152–1165
  9. Селекция мод латерального волновода для реализации одномодового режима работы лазеров с распределенным брэгговским зеркалом

    Квантовая электроника, 52:10 (2022),  889–894
  10. Исследование динамики разогрева в квазинепрерывном режиме активной области мощных полупроводниковых лазеров (1060 нм) со сверхширокой излучающей апертурой (800 мкм)

    Квантовая электроника, 52:9 (2022),  794–798
  11. Анализ ватт-амперных характеристик мощных полупроводниковых лазеров (1060 нм) в рамках стационарной двумерной модели

    Квантовая электроника, 52:4 (2022),  343–350
  12. Квазинепрерывные мощные полупроводниковые лазеры (1060 нм) со сверхширокой излучающей апертурой

    Квантовая электроника, 52:4 (2022),  340–342
  13. Мощные импульсные полупроводниковые лазеры (910 нм) мезаполосковой конструкции со сверхширокой излучающей апертурой на основе туннельно-связанных гетероструктур InGaAs/AlGaAs/GaAs

    Квантовая электроника, 52:2 (2022),  174–178
  14. Вертикальные стеки мощных импульсных (100 нc) полупроводниковых лазеров киловаттного уровня пиковой мощности на основе мезаполосковых волноводов со сверхширокой (800 мкм) апертурой на длине волны 1060 нм

    Квантовая электроника, 52:2 (2022),  171–173
  15. Рабочие характеристики полупроводниковых лазеров на квантовых ямах в зависимости от ширины волноводной области

    Физика и техника полупроводников, 55:12 (2021),  1229–1235
  16. Квантово-каскадный лазер с выводом излучения через текстурированный слой

    Физика и техника полупроводников, 55:11 (2021),  1081–1085
  17. Поверхностно-излучающий квантово-каскадный лазер с кольцевым резонатором

    Физика и техника полупроводников, 55:7 (2021),  602–606
  18. Исследование пространственной динамики включения лазера-тиристора (905 нм) на основе многопереходной гетероструктуры AlGaAs/InGaAs/GaAs

    Физика и техника полупроводников, 55:5 (2021),  466–472
  19. Анализ пороговых условий и эффективности генерации замкнутых мод в больших прямоугольных резонаторах на основе лазерных гетероструктур AlGaAs/GaAs/InGaAs

    Физика и техника полупроводников, 55:5 (2021),  460–465
  20. Изотипные гетероструктуры $n$-AlGaAs/$n$-GaAs, оптимизированные для эффективной межзонной излучательной рекомбинации при накачке электрическим током

    Физика и техника полупроводников, 55:5 (2021),  427–433
  21. Мощные непрерывные лазеры InGaAs/AlGaAs (1070 нм) с расширенным латеральным волноводом мезаполосковой конструкции

    Физика и техника полупроводников, 55:4 (2021),  344–348
  22. Структурно-спектроскопические исследования эпитаксиальных слоев GaAs, выращенных на податливых подложках на основе сверхструктурного слоя и протопористого кремния

    Физика и техника полупроводников, 55:1 (2021),  86–95
  23. Спектроскопические исследования интегрированных гетероструктур GaAs/Si

    Физика и техника полупроводников, 55:1 (2021),  34–40
  24. Гетероструктуры квантово-каскадных лазеров с неселективным заращиванием методом газофазной эпитаксии

    Письма в ЖТФ, 47:24 (2021),  46–50
  25. Исследование динамики выходной оптической мощности полупроводниковых лазеров (1070 nm) с маломодовым латеральным волноводом мезаполосковой конструкции при сверхвысоких токах накачки

    Письма в ЖТФ, 47:7 (2021),  42–45
  26. Оптическое поглощение в волноводе AlGaAs-гетероструктуры n-типа

    Квантовая электроника, 51:11 (2021),  987–991
  27. Мощные полупроводниковые гибридные импульсные лазерные излучатели в диапазоне длин волн 900–920 нм

    Квантовая электроника, 51:10 (2021),  912–914
  28. Мощные полупроводниковые AlGaInAs/InP-лазеры спектрального диапазона 1.9–2.0 мкм со сверхузким волноводом

    Квантовая электроника, 51:10 (2021),  909–911
  29. Полупроводниковые лазеры InGaAs/AlGaAs/GaAs ($\lambda$ = 900–920 нм) с расширенным асимметричным волноводом и улучшенной вольт-амперной характеристикой

    Квантовая электроника, 51:10 (2021),  905–908
  30. Сравнение полупроводниковых лазеров AlGaInAs/InP (λ = 1450–1500 нм) со сверхузким и сильно асимметричным типом волноводов

    Квантовая электроника, 51:4 (2021),  283–286
  31. Полупроводниковые AlGaInAs/InP-лазеры (λ = 1450 – 1500 нм) с сильно асимметричным волноводом

    Квантовая электроника, 51:2 (2021),  133–136
  32. Ватт-амперные характеристики мощных импульсных полупроводниковых лазеров (1060 нм), работающих при повышенных (до 90 °С) температурах

    Квантовая электроника, 51:2 (2021),  129–132
  33. Экспериментальная методика исследования оптического поглощения в волноводных слоях полупроводниковых лазерных гетероструктур

    Квантовая электроника, 51:2 (2021),  124–128
  34. Динамика спектров квантово-каскадных лазеров, генерирующих частотные гребенки в длинноволновом инфракрасном диапазоне

    ЖТФ, 90:8 (2020),  1333–1336
  35. Спектральные характеристики полукольцевых квантово-каскадных лазеров

    Оптика и спектроскопия, 128:8 (2020),  1165–1170
  36. Исследование спектров генерации арочных квантово-каскадных лазеров

    Оптика и спектроскопия, 128:6 (2020),  696–700
  37. Исследование пространственной и токовой динамики оптических потерь в полупроводниковых лазерных гетероструктурах методом оптического зондирования

    Физика и техника полупроводников, 54:8 (2020),  734–742
  38. Модель управления конкуренцией замкнутых модовых структур в прямоугольных резонаторах большого размера на основе лазерных гетероструктур AlGaAs/InGaAs/GaAs

    Физика и техника полупроводников, 54:5 (2020),  484–489
  39. Моделирование пространственной динамики включения лазера-тиристора ($\lambda$ = 905 нм) на основе многопереходной гетероструктуры AlGaAs/InGaAs/GaAs

    Физика и техника полупроводников, 54:5 (2020),  478–483
  40. Исследования процессов транспорта носителей заряда в изотипных гетероструктурах типа $n^{+}$-GaAs/$n^{0}$-GaAs/$n^{+}$-GaAs с тонким широкозонным барьером AlGaAs

    Физика и техника полупроводников, 54:5 (2020),  452–457
  41. Одномодовые лазеры (1050 нм) мезаполосковой конструкции на основе гетероструктуры AlGaAs/GaAs со сверхузким волноводом

    Физика и техника полупроводников, 54:4 (2020),  414–419
  42. Излучательные характеристики мощных полупроводниковых лазеров (1060 нм) с узким мезаполосковым контактом на основе асимметричных гетероструктур AlGaAs/GaAs с широким волноводом

    Физика и техника полупроводников, 54:4 (2020),  408–413
  43. Исследование пространственных характеристик излучения квантовых каскадных лазеров для спектрального диапазона 8 $\mu$m

    Письма в ЖТФ, 46:22 (2020),  51–54
  44. Гетероструктуры квантово-каскадных лазеров спектрального диапазона 4.6 $\mu$m для реализации непрерывного режима генерации

    Письма в ЖТФ, 46:9 (2020),  35–38
  45. Полупроводниковые лазеры на основе гетероструктур AlGaInAs/InP со сверхузким волноводом и повышенным электронным барьером

    Квантовая электроника, 50:12 (2020),  1123–1125
  46. Тройной интегрированный лазер-тиристор

    Квантовая электроника, 50:11 (2020),  1001–1003
  47. Разработка и исследование мощных квантово-каскадных лазеров для спектрального диапазона 4.5–4.6 мкм

    Квантовая электроника, 50:11 (2020),  989–994
  48. Динамика излучения Yb, Er-лазера с диодной накачкой при воздействии на пассивный затвор мощной внешней подсветки

    Квантовая электроника, 50:9 (2020),  822–825
  49. Вытекание излучения из волновода мощных полупроводниковых AlGaAs/InGaAs/GaAs-лазеров

    Квантовая электроника, 50:8 (2020),  722–726
  50. Квантово-каскадные лазеры мощностью 10 Вт для спектральной области 4.6 мкм

    Квантовая электроника, 50:8 (2020),  720–721
  51. Выгорание продольного пространственного провала (LSHB) в мощных полупроводниковых лазерах: численный анализ

    Квантовая электроника, 50:2 (2020),  147–152
  52. Мощные (более 1 Вт) квантовые каскадные лазеры для длинноволнового ИК диапазона при комнатной температуре

    Квантовая электроника, 50:2 (2020),  141–142
  53. Особенности формирования замкнутых модовых структур в прямоугольных резонаторах на основе гетероструктур InGaAs/AlGaAs/GaAs для мощных полупроводниковых лазеров

    Физика и техника полупроводников, 53:6 (2019),  839–843
  54. Особенности транспорта носителей заряда в структурах $n^{+}$$n^{0}$$n^{+}$ с гетеропереходом GaAs/AlGaAs при сверхвысоких плотностях тока

    Физика и техника полупроводников, 53:6 (2019),  816–823
  55. Генерация частотных гребенок квантово-каскадными лазерами спектрального диапазона 8 $\mu$m

    Письма в ЖТФ, 45:20 (2019),  18–21
  56. Мощные квантово-каскадные лазеры с длиной волны генерации 8 $\mu$m

    Письма в ЖТФ, 45:14 (2019),  48–51
  57. Одночастотная генерация арочных квантово-каскадных лазеров при комнатной температуре

    Письма в ЖТФ, 45:8 (2019),  31–33
  58. Экспериментальные исследования динамики распространения включенного состояния низковольтных лазеров-тиристоров на основе гетероструктур AlGaAs/InGaAs/GaAs

    Письма в ЖТФ, 45:8 (2019),  7–11
  59. Исследование многомодовых полупроводниковых лазеров на основе гетероструктуры типа зарощенная меза

    Квантовая электроника, 49:12 (2019),  1172–1174
  60. Перестраиваемый источник одночастотного излучения на основе массива РОС-лазеров для спектрального диапазона 1.55 мкм

    Квантовая электроника, 49:12 (2019),  1158–1162
  61. Двойной интегрированный лазер-тиристор

    Квантовая электроника, 49:11 (2019),  1011–1013
  62. РОС-лазеры с высоким коэффициентом связи для спектральной области 1.55 мкм

    Квантовая электроника, 49:9 (2019),  801–803
  63. AlGaAs/GaAs/InGaAs-лазеры со сверхузким волноводом

    Квантовая электроника, 49:7 (2019),  661–665
  64. Импульсный лазерный модуль спектрального диапазона 1500–1600 нм на основе мощного полупроводникового лазера

    Квантовая электроника, 49:5 (2019),  488–492
  65. Высокотемпературная лазерная генерация квантово-каскадных лазеров в спектральной области 8 $\mu$m

    Физика твердого тела, 60:11 (2018),  2251–2254
  66. Динамика включения квантово-каскадных лазеров с длиной волны генерации 8100 nm при комнатной температуре

    ЖТФ, 88:11 (2018),  1708–1710
  67. Двухчастотная генерация в квантово-каскадных лазерах спектрального диапазона 8 $\mu$m

    Оптика и спектроскопия, 125:3 (2018),  387–390
  68. Полностью электрическое управление разверткой лазерного луча на основе квантово-размерной гетероструктуры с интегрированным распределенным брэгговским зеркалом

    Физика и техника полупроводников, 52:12 (2018),  1491–1498
  69. Влияние толщины волноводных слоев на выходные характеристики полупроводниковых лазеров с длинами волн излучения 1500–1600 нм

    Квантовая электроника, 48:3 (2018),  197–200
  70. Полностью оптическая ячейка-модулятор на основе AlGaAs/GaAs/InGaAs-гетероструктур на длину волны 905 nm

    Письма в ЖТФ, 43:2 (2017),  31–37
  71. Полупроводниковые AlGaInAs / InP-лазеры со сверхузкими волноводами

    Квантовая электроника, 47:3 (2017),  272–274
  72. Исследование импульсных характеристик полупроводниковых лазеров с расширенным волноводом при низких температурах (110–120 K)

    Физика и техника полупроводников, 50:10 (2016),  1414–1419
  73. К вопросу о внутренних оптических потерях и токовых утечках в лазерных гетероструктурах на основе твердых растворов AlGaInAs/InP

    Физика и техника полупроводников, 50:9 (2016),  1247–1252
  74. Поверхностные интегрированные дифракционные решетки высших порядков для полупроводниковых лазеров

    Квантовая электроника, 45:12 (2015),  1091–1097
  75. Оптимизация параметров резонатора лазеров на основе твердых растворов AlGaInAsP/InP (λ=1470 нм)

    Квантовая электроника, 45:10 (2015),  879–883
  76. Исследование коэффициента поглощения в слоях гетероструктуры полупроводникового лазера

    Квантовая электроника, 45:7 (2015),  604–606
  77. Влияние параметров лазерного резонатора на насыщение ватт-амперных характеристик мощных импульсных лазеров

    Квантовая электроника, 45:7 (2015),  597–600
  78. Насыщение ватт-амперных характеристик мощных лазеров (λ = 1.0 – 1.1 мкм) в импульсном режиме генерации

    Квантовая электроника, 44:11 (2014),  993–996
  79. Спектральные характеристики многомодовых полупроводниковых лазеров с поверхностной дифракционной решеткой высших порядков

    Квантовая электроника, 44:10 (2014),  907–911

  80. Квантово-каскадные лазеры для спектрального диапазона 8 мкм: технология, дизайн и анализ

    УФН, 194:1 (2024),  98–105


© МИАН, 2024