RUS  ENG
Полная версия
ПЕРСОНАЛИИ
Качуровский Александр Григорьевич
Качуровский Александр Григорьевич
доктор физико-математических наук (2000)

Специальность ВАК: 01.01.01 (вещественный, комплексный и функциональный анализ)
Дата рождения: 21.01.1961
E-mail:
Ключевые слова: эргодическая теория, скорости сходимости в эргодических теоремах, суммы Фейера, унификации эргодических теорем и теорем о сходимости мартингалов
Коды УДК: 517.987, 519.214, 519.216
Коды MSC: 28D, 37A, 60F, 60G

Основные темы научной работы:

Доказано (1996), что степенная скорость сходимости в эргодической теореме фон Неймана эквивалентна степенной же, с тем же показателем степени, особенности в нуле спектральной меры усредняемой функции относительно соответствующей динамической системы. Тем самым показано, что оценки скорости сходимости в этой эргодической теореме с необходимостью являются спектральными.

Получены (1996; с 2010 – с учениками) оценки скоростей сходимости: в эргодической теореме фон Неймана – по особенности в нуле спектральной меры, и по скорости убывания корреляций (т.е. коэффициентов Фурье этой меры); в эргодической теореме Биркгофа – по скорости сходимости в теореме фон Неймана, и по скорости убывания вероятностей больших уклонений. Даны асимптотически точные оценки скоростей сходимости в обеих этих эргодических теоремах для некоторых известных бильярдов и систем Аносова.

Введен (1998) в рассмотрение новый стохастический процесс, содержащий эргодические средние и мартингалы как частные вырожденные случаи, для которого доказаны сходимость п.в. (дополнительное условие интегрируемости супремума модуля процесса было опущено учеником И.В. Подвигиным в 2010) и по норме, и справедливы максимальное и доминантное неравенства.

Показано (2018), что суммы Фейера мер на окружности и нормы отклонений от предела в эргодической теореме фон Неймана вычисляются фактически по одним и тем же формулам (интегрированием ядер Фейера) – так что сама эта эргодическая теорема является утверждением об асимптотике роста сумм Фейера в точке 0 соответствующей спектральной меры. Имеющиеся в литературе по гармоническому анализу многочисленные оценки уклонений сумм Фейера в точке позволили получить новые оценки скоростей сходимости в этой эргодической теореме.

Доказано (2019; с И.В. Подвигиным) существование справедливых п.в. оценок поточечной скорости сходимости в теореме Биркгофа (в эргодическом случае); получены критерии максимально возможной такой скорости сходимости.


Основные публикации:
  1. Качуровский А. Г., “Скорости сходимости в эргодических теоремах”, УМН, 51:4 (1996), 73–124  mathnet  mathscinet  zmath  adsnasa  isi  scopus
  2. Качуровский А. Г., “Единые теории, унифицирующие эргодические средние и мартингалы”, Труды МИАН, 256, 2007, 172–200  mathnet  mathscinet  zmath  scopus
  3. Качуровский А. Г., Подвигин И. В., “Оценки скоростей сходимости в эргодических теоремах фон Неймана и Биркгофа”, Труды ММО, 77, № 1, 2016, 1–66  mathnet  mathscinet  zmath  scopus
  4. Качуровский А. Г., Подвигин И. В., “Суммы Фейера периодических мер и эргодическая теорема фон Неймана”, Докл. РАН, 481:4 (2018), 358–361  mathnet  zmath  isi  scopus
  5. Качуровский А. Г., Подвигин И. В., “Об измерении скоростей сходимости в эргодической теореме Биркгофа”, Матем. заметки, 106:1 (2019), 40–52  mathnet  mathscinet  zmath  isi  scopus

Публикации в базе данных Math-Net.Ru

Доклады и лекции в базе данных Math-Net.Ru

Персональные страницы:

Организации:


© МИАН, 2024