RUS  ENG
Полная версия
ПЕРСОНАЛИИ
Воскресенская Галина Валентиновна
доцент
доктор физико-математических наук (2010)

Специальность ВАК: 01.01.06 (математическая логика, алгебра и теория чисел)
Дата рождения: 18.05.1966
E-mail:
Ключевые слова: модулярные формы, представления групп, алгебраическая теория чисел, алгебраические группы.

Основные темы научной работы:

Изучается специальный класс модулярных форм, которые полностью описываются следующими условиями: это параболические формы целого веса с характерами, собственные относительно всех операторов Гекке и не имеющие нулей вне параболических вершин. Получен полный список этих функций, все они являются модифицированными произведениями $/eta$-функций Дедекинда. Назовем их мультипликативными $/eta$-произведениями. Для некоторых из этих функций найдена арифметическая интерпретация коэффициентов Фурье с помощью октав Кэли и кватернионов Гурвица. Найдено выражение характеров Рамануджана для некоторых из этих функций через характеры Вейля. Произведения $/eta$-функций можно связать с элементами конечного порядка в группах с помощью линейных представлений. Рассматривалась проблема нахождения таких конечных групп, что модулярные формы, ассоциированные с элементами этих групп с помощью некоторого точного представления, являются мультипликативными $/eta$-произведениями. Исследованы группы порядка 24, конечные подгруппы в SL(5,C), метациклические, в частности, диэдральные, группы. Доказано, что не существует такой разрешимой группы, что с ее элементами с помощью некоторого точного представления можно ассоциировать все мультипликативные $/eta$-произведения и только их. Исследовались коэффициенты Фурье этих функций как центральные функции на соответствующих группах. Также изучались эллиптические кривые над конечными полями: построены графы 2-изогений суперсингулярных кривых и найдена формула, связывающая количество эллиптических кривых с фиксированной группой $F_q$ рациональных точек с числом классов эквивалентности положительно определенных квадратичных форм от двух переменных.


Основные публикации:
Публикации в базе данных Math-Net.Ru

Доклады и лекции в базе данных Math-Net.Ru

Персональные страницы:

Организации:


© МИАН, 2025