RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Севрюк Михаил Борисович

Публикации в базе данных Math-Net.Ru

  1. Three Examples in the Dynamical Systems Theory

    SIGMA, 18 (2022), 084, 13 стр.
  2. Частичное сохранение частот и показателей Флоке инвариантных торов в обратимом контексте 2 теории КАМ

    СМФН, 63:3 (2017),  516–541
  3. Herman's approach to quasi-periodic perturbations in the reversible KAM context 2

    Mosc. Math. J., 17:4 (2017),  803–823
  4. Families of Invariant Tori in KAM Theory: Interplay of Integer Characteristics

    Regul. Chaotic Dyn., 22:6 (2017),  603–615
  5. Whitney Smooth Families of Invariant Tori within the Reversible Context 2 of KAM Theory

    Regul. Chaotic Dyn., 21:6 (2016),  599–620
  6. Translation of the V. I. Arnold Paper "From Superpositions to KAM Theory" (Vladimir Igorevich Arnold. Selected–60, Moscow: PHASIS, 1997, pp. 727–740)

    Regul. Chaotic Dyn., 19:6 (2014),  734–744
  7. Statistics of Energy Partitions for Many-Particle Systems in Arbitrary Dimension

    Regul. Chaotic Dyn., 19:3 (2014),  318–347
  8. KAM theory for lower dimensional tori within the reversible context 2

    Mosc. Math. J., 12:2 (2012),  435–455
  9. The reversible context 2 in KAM theory: the first steps

    Regul. Chaotic Dyn., 16:1-2 (2011),  24–38
  10. Частичное сохранение частот и показателей Флоке в теории КАМ

    Труды МИАН, 259 (2007),  174–202
  11. The classical KAM theory at the dawn of the twenty-first century

    Mosc. Math. J., 3:3 (2003),  1113–1144
  12. On the Convergence of Coordinate Transformations in the KAM Procedure

    Regul. Chaotic Dyn., 5:2 (2000),  181–188
  13. Invariant tori of intermediate dimensions in Hamiltonian systems

    Regul. Chaotic Dyn., 3:1 (1998),  39–48
  14. Инвариантные торы промежуточных размерностей в гамильтоновых системах

    Regul. Chaotic Dyn., 2:3-4 (1997),  30–40
  15. Инвариантные торы гамильтоновых систем, невырожденных в смысле Рюссмана

    Докл. РАН, 346:5 (1996),  590–593
  16. Некоторые проблемы теории КАМ: условно-периодические движения в типичных системах

    УМН, 50:2(302) (1995),  111–124
  17. Инвариантные торы обратимых систем промежуточных размерностей

    Докл. РАН, 328:5 (1993),  550–553
  18. К оценке числа столкновений $n$ упругих частиц на прямой

    ТМФ, 96:1 (1993),  64–78
  19. Инвариантные торы обратимых систем при наличии дополнительных четных координат

    Докл. РАН, 326:3 (1992),  421–424
  20. О стационарной и нестационарной устойчивости периодических решений обратимых систем

    Функц. анализ и его прил., 23:2 (1989),  40–48
  21. Об инвариантных торах обратимых систем в окрестности положения равновесия

    УМН, 42:4(256) (1987),  191–192
  22. Целочисленные гомологии пространств вырожденных бинарных форм над $\mathbf{C}$

    Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1985, № 5,  18–20
  23. Когомологии проективно компактифицированных комп­лексных ласточкиных хвостов и их дополнений

    УМН, 39:5(239) (1984),  251–252

  24. К истории теории КАМ

    Нелинейная динам., 12:2 (2016),  289–293
  25. Мой научный руководитель — В. И. Арнольд

    Матем. просв., сер. 3, 2 (1998),  13–18
  26. Invariant sets of degenerate Hamiltonian systems near equilibria

    Regul. Chaotic Dyn., 3:3 (1998),  82–92
  27. Владимир Игоревич Арнольд (к шестидесятилетию со дня рождения)

    УМН, 52:5(317) (1997),  235–255
  28. Поправки к статье “Инвариантные торы обратимых систем промежуточных размерностей” (ДАН, 1993, т. 328, с. 550–553)

    Докл. РАН, 346:4 (1996),  576
  29. Поправки к статье “Инвариантные торы обратимых систем при наличии дополнительных четных координат” (ДАН, 1992 г., т. 326, № 3, с. 421–424)

    Докл. РАН, 330:5 (1993),  672


© МИАН, 2024