RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Бильдхауэр Михаэль

Публикации в базе данных Math-Net.Ru

  1. Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems

    Зап. научн. сем. ПОМИ, 508 (2021),  73–88
  2. Existence theory for the EED inpainting problem

    Алгебра и анализ, 32:3 (2020),  127–148
  3. An alternative approach towards the higher order denoising of images. Analytical aspects

    Зап. научн. сем. ПОМИ, 444 (2016),  47–88
  4. $C^{1,\alpha}$-interior regularity for minimizers of a class of variational problems with linear growth related to image inpainting

    Алгебра и анализ, 27:3 (2015),  51–65
  5. A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation

    Зап. научн. сем. ПОМИ, 385 (2010),  5–17
  6. Error estimates for obstacle problems Of higher order

    Зап. научн. сем. ПОМИ, 348 (2007),  5–18
  7. Variational integrals with a wide range of anisotropy

    Алгебра и анализ, 18:5 (2006),  46–71
  8. On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids

    Алгебра и анализ, 18:2 (2006),  1–23
  9. Estimates of the deviation from the minimizer for variational problems with power growth functionals

    Зап. научн. сем. ПОМИ, 336 (2006),  5–24
  10. Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions

    Алгебра и анализ, 14:1 (2002),  26–45
  11. Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions

    Зап. научн. сем. ПОМИ, 288 (2002),  79–99
  12. A uniqueness theorem for the dual problem associated to a variational problem with linear growth

    Зап. научн. сем. ПОМИ, 271 (2000),  83–91
  13. Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth

    Зап. научн. сем. ПОМИ, 259 (1999),  46–66


© МИАН, 2024