RUS  ENG
Полная версия
ПЕРСОНАЛИИ
Кузнецов Дмитрий Феликсович
Кузнецов Дмитрий Феликсович
доктор физико-математических наук (2003)

Специальность ВАК: 05.13.18 (математическое моделирование, численные методы и комплексы программ)
Дата рождения: 24.04.1970
Телефон: 552 67 50
E-mail:
Сайт: http://www.sde-kuznetsov.spb.ru
Ключевые слова: повторный стохастический интеграл Ито, повторный стохастический интеграл Стратоновича, винеровский процесс, многомерный винеровский процесс, бесконечномерный $Q$-винеровский процесс, стохастическое дифференциальное уравнение Ито, стохастическое дифференциальное уравнение скачкообразно-диффузионного типа, некоммутативное полулинейное стохастическое дифференциальное уравнение с частными производными и нелинейным мультипликативным пространственно-временным шумовым возмущением, стохастическое разложение Ито-Тейлора, стохастическое разложение Стратоновича-Тейлора, обобщенный кратный ряд Фурье, кратный ряд Фурье-Лежандра, кратный тригонометрический ряд Фурье, среднеквадратическая аппроксимация повторных стохастических интегралов, аппроксимация повторных стохастических интегралов с вероятностью $1$, сильные численные методы высоких порядков точности для стохастических дифференциальных уравнений Ито, численное моделирование стохастических систем.
Коды УДК: 519.2, 519.21, 519.6, 517.521, 517.521.5, 517.586, 519.85
Коды MSC: 60H10, 60H35, 65C30, 60H05, 42B05, 42C10

Основные темы научной работы:

Разработан метод Фурье применительно к численному интегрированию стохастических дифференциальных уравнений (СДУ) Ито$,$ СДУ скачкообразно-диффузионного типа$,$ а также к численному интегрированию некоммутативных полулинейных СДУ с частными производными и нелинейным мультипликативным пространственно-временным шумовым возмущением (в рамках полугруппового подхода или подхода$,$ основанного на так называемом мягком решении)$.$ А именно$,$ применены обобщенные кратные ряды Фурье (сходящиеся в смысле нормы в гильбертовом пространстве $L_2([t,\hspace{0.2mm} T]^k),$ $k\in \mathbb {N}$) по произвольным полным ортонормированным системам функций в пространстве $L_2([t,\hspace{0.2mm} T]^k),$ $k\in \mathbb {N}$ к разложению и сильной (среднеквадратической$,$ в среднем степени $p$ $(p>0),$ а также с вероятностью $1$) аппроксимации повторных стохастических интегралов Ито вида \begin{equation} \label{1} \int\limits_t^T\psi_k(t_k)\ \ldots \int\limits_t^{t_{2}} \psi_1(t_1) d{\bf W}_{t_1}^{(i_1)}~ \ldots~ d{\bf W}_{t_k}^{(i_k)}, \end{equation} где $k\in \mathbb {N},\ $ $\psi_{1}(\tau),\ldots,\psi_k(\tau)\in L_2[t, T],$ ${\bf W}_{\tau}\in \mathbb{R^m}$ $-$ стандартный винеровский процесс c независимыми компонентами $\ {\bf W}_{\tau}^{(i)}$ $(i=1,\ldots,m),\ $ ${\bf W}_{\tau}^{(0)}:=\tau,\ $ $i_1,\ldots,i_k$ $=$ $0,\ 1,\ldots,m.$

Установлена взаимосвязь указанного разложения с кратными стохастическими интегралами Винера относительно компонент многомерного винеровского процесса и многочленами Эрмита от векторного случайного аргумента. Вычислена точно среднеквадратическая погрешность аппроксимации повторных стохастических интегралов Ито вида $(1)$ произвольной кратности $k,\ $ $k\in\mathbb{N}$ для всех возможных сочетаний индексов $i_1,\ldots, i_k \in\{1,\ldots, m\}$ в рамках данного подхода.

Сформулирована и доказана теорема о сходимости с вероятностью $1$ разложений повторных стохастических интегралов вида $(1)$ произвольной кратности $k\in\mathbb{N}$ для случая $\psi_{1}(\tau),\ldots,\psi_k(\tau)\in C^1[t,T],$ а также кратных рядов Фурье-Лежандра и кратных тригонометрических рядов Фурье, сходящихся в смысле нормы в пространстве $L_2([t,\hspace{0.2mm} T]^k),$ $k\in \mathbb {N}.$ Найдена скорость сходимости в этой теореме.

Произведено обобщение указанного метода Фурье для полных ортонормированных с весом $\ r(t_1) \ldots r(t_k)$ систем функций в пространстве $L_2([t,\hspace{0.2mm} T]^k),$ $k\in \mathbb {N},$ а также для некоторых других типов повторных стохастических интегралов (повторных стохастических интегралов по мартингальным пуассоновским мерам и повторных стохастических интегралов по мартингалам)$.$

Отмеченные выше результаты адаптированы при специальном условии на следовые ряды для повторных стохастических интегралов Стратоновича вида \begin{equation} \label{2} \int\limits_t^T\psi_k(t_k)\ \ldots \int\limits_t^{t_{2}} \psi_1(t_1)\hspace{0.3mm} \circ d{\bf W}_{t_1}^{(i_1)}\ \ldots\hspace{0.5mm} \circ d{\bf W}_{t_k}^{(i_k)}, \end{equation} где $k\in \mathbb {N},\ $ $\psi_{1}(\tau),\ldots,\psi_k(\tau)\in L_2[t,T],$ ${\bf W}_{\tau}\in \mathbb{R^m}$ $-$ стандартный винеровский процесс c независимыми компонентами $\ {\bf W}_{\tau}^{(i)}$ $(i=1,\ldots,m),\ $ ${\bf W}_{\tau}^{(0)}:=\tau,\ $ $i_1,\ldots,i_k$ $=$ $0,\ 1,\ldots,m.$ Указанное выше условие на следовые ряды было снято в следующих трех случаях.

$1.$ Случай кратных рядов Фурье по полным ортонормированным системам многочленов Лежандра и тригонометрических функций (базис Фурье) в $L_2([t,\hspace{0.2mm} T]^k),$ а также $\psi_1(\tau),\ldots,\psi_k(\tau)\in C^1[t,T]$ $(k=1,\ldots,5),$ $\psi_1(\tau),\ldots,\psi_6(\tau)\equiv 1$ $(k=6)$. Найдена среднеквадратическая скорость сходимости разложений повторных стохастических интегралов Стратоновича для указанного случая $(k=1,\ldots,5).$

$2.$ Случай кратных рядов Фурье по произвольным полным ортонормированным системам функций в $L_2([t,\hspace{0.2mm} T]^k)$ и $\psi_1(\tau), \ \psi_2(\tau)\in L_2[t,T]$ $(k=1,\ 2),\ $ $\psi_1(\tau), \ldots, \psi_k(\tau)$ $\in$ $C[t, T]\ $ $(k=3,\ 4,\ 5).$

$3.$ Случай кратных рядов Фурье по произвольным полным ортонормированным системам функций в $L_2([t,\hspace{0.2mm} T]^k)$ и $\psi_1(\tau), \ldots, \psi_k(\tau)$ $\in$ $C[t, T]\ $ $(k\in\mathbb{N})$ (https://arxiv.org/pdf/2003.14184v57, Разд. 2.31, Теорема 2.61).

Эти результаты могут быть интерпретированы как теоремы типа Вонга-Закаи о сходимости повторных интегралов Римана-Стилтьеса к повторным стохастическим интегралам Стратоновича. Сформулирована гипотеза о разложении повторных стохастических интегралов Стратоновича вида $(2)$ произвольной кратности $k\in \mathbb {N}$.

Сформулированы и доказаны две теоремы о разложении повторных стохастических интегралов Стратоновича вида $(2)$ произвольной кратности $k\in \mathbb {N},$ основанном на повторных рядах Фурье сходящихся поточечно.

Численное моделирование повторных стохастических интегралов Ито и Стратоновича вида $(1)$ и $(2)$ является одной из основных проблем на стадии численной реализации сильных численных методов высоких порядков точности для СДУ Ито и СДУ скачкообразно-диффузионного типа$.$

Метод Фурье для повторных стохастических интегралов Ито вида $(1)$ применен также к среднеквадратической аппроксимации повторных стохастических интегралов по бесконечномерному $Q\hspace{0.2mm}$-$\hspace{0.2mm}$винеровскому процессу$.$ В частности$,$ к среднеквадратической аппроксимации интегралов вида $$ \int\limits_{t}^{T} \Psi_k(Z) \left(\ldots \left(\hspace{0.2mm} \int\limits_{t}^{t_2} \Psi_1(Z) \psi_1(t_1) d{\bf W}_{t_1}({\bf x})\right) \ldots \right) \psi_k(t_k) d{\bf W}_{t_k}({\bf x}), $$ где $k\in \mathbb {N},$ ${\bf W}_{\tau}({\bf x})$ $-$ $U~$-$~$значный $Q~$-$~$винеровский процесс$,$ $Z:~ \Omega \rightarrow H$ $-$ ${\bf F}_t/{\cal B}(H)~$-$~$измеримое отображение$,$ $\Psi_k(v) (\hspace{1.6mm} \ldots \hspace{0.8mm}( \Psi_1(v) )\hspace{0.8mm} \ldots \hspace{1.6mm})$ $-$ $k~$-$~$линейный оператор Гильберта-Шмидта$,$ действующий из $\ \ U_0~\times~\ldots~\times~U_0\ \ $ в $\ H\ $ для всех $\ v\in H,\ $ $\psi_1(\tau),\ldots,\psi_k(\tau)\in L_2[t,T],\ $ $Q:~U \rightarrow U$ $-$ оператор с конечным следом$,$ $\hspace{0.2mm}$ $U,$ $H$ $-$ сепарабельные вещественные гильбертовы пространства$,\ $ $U_0=Q^{1/2}U.$

Среднеквадратическая аппроксимация повторных стохастических интегралов по бесконечномерному $Q$-винеровскому процессу является одной из наиболее сложных проблем на стадии численной реализации сильных аппроксимационных схем высоких порядков точности (относительно дискретизации по времени) для полулинейных некоммутативных СДУ с частными производными и нелинейным мультипликативным пространственно-временным шумовым возмущением (аппроксимационные схемы$,$ основанные на так называемом мягком решении)$.$

Впервые применены многочлены Лежандра для среднеквадратической аппроксимации повторных стохастических интегралов Ито и Стратоновича вида $(1)$ и $(2)$ кратностей $1 - 6.$ Показано$,$ что система многочленов Лежандра является оптимальной при решении данной проблемы при $k\ge 3.$

Сформулированы и доказаны теоремы о замене порядка интегрирования для повторных стохастических интегралов Ито и повторных стохастических интегралов по мартингалам$.$

Получены четыре так называемых унифицированных разложения Ито-Тейлора и Стратоновича-Тейлора$.$

Построены сильные численные методы достаточно высоких порядков точности $\gamma = 1.0,$ $1.5,$ $2.0,$ $2.5,$ $3.0, ... $ для СДУ Ито с многомерным и некоммутативным шумом$.$ Среди них явные и неявные$,$ одношаговые и многошаговые методы$,$ в том числе методы типа Рунге-Кутта$.$

В сферу научных интересов также входят различные типы стохастических интегралов и их свойства$,$ а также численное моделирование линейных и нелинейных стохастических динамических систем$.$


Основные публикации:
  1. Kuznetsov D. F., Kuznetsov M. D., “Mean-square approximation of iterated stochastic integrals from strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs based on multiple Fourier-Legendre series”, Recent Developments in Stochastic Methods and Applications, ICSM-5 2020, Springer Proceedings in Mathematics & Statistics, 371, eds. Shiryaev A.N., Samouylov K.E, Kozyrev D.V., Springer, Cham, 2021, 17–32  crossref  mathscinet  elib  scopus
  2. Kuznetsov D. F., “Explicit one-step numerical method with the strong convergence order of 2.5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor–Stratonovich expansion”, "Computational Mathematics and Mathematical Physics", 60:3 (2020), 379–389  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  3. Kuznetsov D. F., “A comparative analysis of efficiency of using the Legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations”, "Computational Mathematics and Mathematical Physics", 59:8 (2019), 1236–1250  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  4. Kuznetsov D. F., “Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations”, "Computational Mathematics and Mathematical Physics", 58:7 (2018), 1058–1070  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  5. Kuznetsov D. F., “Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals: Method of Generalized Multiple Fourier Series. Application to Numerical Solution of Ito SDEs and Semilinear SPDEs”, 2024, 1–1152, arXiv: 2003.14184  crossref  adsnasa  isi  elib

Публикации за последние годы

Доклады и лекции в базе данных Math-Net.Ru

Персональные страницы:

Организации:


© МИАН, 2024