RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Веденяпин Виктор Валентинович

Публикации в базе данных Math-Net.Ru

  1. Математика ускоренного расширения Вселенной и пространство Лобачевского

    Докл. РАН. Матем., информ., проц. упр., 522 (2025),  11–18
  2. Расширение Вселенной в случае обобщенной метрики Фридмана–Леметра–Робертсона–Уокера

    Препринты ИПМ им. М. В. Келдыша, 2025, 014, 26 стр.
  3. О выводе уравнения Власова–Максвелла–Эйнштейна из принципа наименьшего действия, методе Гамильтона–Якоби и модели Милна–Маккри

    Докл. РАН. Матем., информ., проц. упр., 515 (2024),  60–65
  4. Математическая теория ускоренного расширения Вселенной на основе принципа наименьшего действия и модели Фридмана и Милна-Маккри

    Препринты ИПМ им. М. В. Келдыша, 2024, 003, 28 стр.
  5. Уравнения типа Власова–Максвелла–Эйнштейна и их следствия. Приложения к астрофизическим задачам

    ТМФ, 218:2 (2024),  258–279
  6. Математическая теория расширения Вселенной на основе принципа наименьшего действия

    Ж. вычисл. матем. и матем. физ., 64:11 (2024),  2114–2131
  7. О выводе уравнений гравитации из принципа наименьшего действия, релятивистских решениях Милна-Маккри и о точках Лагранжа

    Докл. РАН. Матем., информ., проц. упр., 514:1 (2023),  69–73
  8. О выводе и свойствах уравнений типа Власова

    Препринты ИПМ им. М. В. Келдыша, 2023, 020, 18 стр.
  9. Erratum to: Several Articles in Doklady Mathematics

    Докл. РАН. Матем., информ., проц. упр., 506 (2022),  404–405
  10. О выводе уравнений электродинамики и гравитации из принципа наименьшего действия, методе Гамильтона–Якоби и космологических решениях

    Докл. РАН. Матем., информ., проц. упр., 504 (2022),  51–55
  11. Уравнение Власова-Эйнштейна и точки Лагранжа

    Препринты ИПМ им. М. В. Келдыша, 2022, 023, 23 стр.
  12. О выводе уравнений электродинамики и гравитации из принципа наименьшего действия

    Ж. вычисл. матем. и матем. физ., 62:6 (2022),  1016–1029
  13. Кинетические модели агрегации, приводящей к морфологической памяти образовавшихся структур

    Ж. вычисл. матем. и матем. физ., 62:2 (2022),  255–269
  14. C.K. Годунов и кинетическая теория в ИПМ им. М.В. Келдыша РАН

    Ж. вычисл. матем. и матем. физ., 60:4 (2020),  621–625
  15. Уравнения Эйлера и Навье–Стокса как следствия уравнений типа Власова

    Препринты ИПМ им. М. В. Келдыша, 2019, 041, 20 стр.
  16. Vlasov–Maxwell–Einstein equation and Einstein lambda

    Препринты ИПМ им. М. В. Келдыша, 2019, 039, 17 стр.
  17. Уравнение Шредингера как следствие новых уравнений типа Власова

    Препринты ИПМ им. М. В. Келдыша, 2019, 026, 11 стр.
  18. Approaches to determining the kinetics for the formation of a nano-dispersed substance from the experimental distribution functions of its nanoparticle properties

    Наносистемы: физика, химия, математика, 10:5 (2019),  549–563
  19. Уравнение типа Власова–Максвелла–Эйнштейна и переход к слаборелятивистскому приближению

    Ж. вычисл. матем. и матем. физ., 59:11 (2019),  1883–1898
  20. Энтропия по Больцману и Пуанкаре, экстремали Больцмана и метод Гамильтона–Якоби в негамильтоновой ситуации

    СМФН, 64:1 (2018),  37–59
  21. Об уравнении Власова–Максвелла–Эйнштейна и его нерелятивистских и слаборелятивистских аналогах

    Препринты ИПМ им. М. В. Келдыша, 2018, 265, 30 стр.
  22. Уравнение Власова–Максвелла–Эйнштейна

    Препринты ИПМ им. М. В. Келдыша, 2018, 188, 20 стр.
  23. Об $H$-теореме для систем химической кинетики с непрерывным и дискретным временем и о системе уравнений нуклеосинтеза

    Ж. вычисл. матем. и матем. физ., 58:9 (2018),  1517–1530
  24. Уравнения типа Власова и Лиувилля, их микроскопические, энергетические и гидродинамические следствия

    Изв. РАН. Сер. матем., 81:3 (2017),  45–82
  25. Обобщенные уравнения типа Больцмана для агрегации в газе

    Ж. вычисл. матем. и матем. физ., 57:12 (2017),  2065–2078
  26. Метод Гамильтона–Якоби для негамильтоновых систем

    Препринты ИПМ им. М. В. Келдыша, 2015, 013, 18 стр.
  27. Метод Гамильтона – Якоби для негамильтоновых систем

    Нелинейная динам., 11:2 (2015),  279–286
  28. Энтропия по Больцману и Пуанкаре

    УМН, 69:6(420) (2014),  45–80
  29. О выводе и классификации уравнений типа Власова и магнитной гидродинамики. Тождество Лагранжа, форма Годунова и критическая масса

    СМФН, 47 (2013),  5–17
  30. О выводе и классификации уравнений типа уравнения Власова и магнитной гидродинамики. Тождество Лагранжа и форма Годунова

    ТМФ, 170:3 (2012),  468–480
  31. Временны́е средние и экстремали Больцмана для марковских цепей, дискретного уравнения Лиувилля и круговой модели Каца

    Ж. вычисл. матем. и матем. физ., 51:11 (2011),  2063–2074
  32. Временные средние и экстремали по Больцману

    Докл. РАН, 422:2 (2008),  161–163
  33. О размерах дискретных моделей уравнения Больцмана для смесей

    Ж. вычисл. матем. и матем. физ., 47:6 (2007),  1045–1054
  34. Фотофорез и реактивные силы

    Матем. моделирование, 18:8 (2006),  77–85
  35. II-й закон термодинамики для химической кинетики

    Матем. моделирование, 17:8 (2005),  106–110
  36. Одномерные дискретные модели кинетических уравнений для смесей

    Ж. вычисл. матем. и матем. физ., 44:3 (2004),  553–558
  37. О движении твердых тел в газе, сопровождающемся неоднородными поверхностными химическими процессами

    Матем. моделирование, 15:6 (2003),  6–10
  38. О дискретных моделях уравнения Больцмана для смесей

    Дифференц. уравнения, 36:7 (2000),  925–929
  39. Дискретные модели уравнения Больцмана для смесей

    Матем. моделирование, 12:7 (2000),  18–22
  40. Дискретные модели уравнения Больцмана для смесей

    Препринты ИПМ им. М. В. Келдыша, 1999, 017
  41. Инварианты для гамильтонианов и кинетических уравнений

    УМН, 54:5(329) (1999),  153–154
  42. О законах сохранения для полиномиальных гамильтонианов и для дискретных моделей уравнения Больцмана

    ТМФ, 121:2 (1999),  307–315
  43. Представления общих соотношений коммутации. Асимптотика спектра трех квантовых гамильтонианов

    Докл. РАН, 352:2 (1997),  155–158
  44. Об уравнении Власова-Эйнштейна и квантовании уравнения Власова

    Препринты ИПМ им. М. В. Келдыша, 1997, 013
  45. Представления общих соотношений коммутации

    ТМФ, 113:3 (1997),  369–383
  46. Асимптотика спектра квантовых гамильтонианов

    Докл. РАН, 351:4 (1996),  444–447
  47. Ряды экспонент и суперпозиция бегущих волн

    Препринты ИПМ им. М. В. Келдыша, 1995, 117
  48. Полуограниченность и асимптотика спектра трех квантовых гамильтонианов

    Препринты ИПМ им. М. В. Келдыша, 1995, 049
  49. Оценки собственных значений квантовых гамильтонианов, описывающих комбинационное рассеяние

    Препринты ИПМ им. М. В. Келдыша, 1995, 041
  50. Представления общих соотношений коммутации. Законы сохранения для квантовых гамильтонианов

    Препринты ИПМ им. М. В. Келдыша, 1995, 030
  51. О классификации и устойчивости стационарных решений уравнения Власова на торе и в граничной задаче

    Тр. МИАН, 203 (1994),  13–20
  52. О дискретных моделях квантового уравнения Больцмана

    Матем. сб., 184:11 (1993),  21–38
  53. О классификации стационарных решений уравнения Власова на торе и граничная задача

    Докл. РАН, 323:6 (1992),  1004–1006
  54. Дифференциальные формы в пространствах без нормы. Теорема о единственности $H$-функции Больцмана

    УМН, 43:1(259) (1988),  159–179
  55. Граничные задачи для стационарного уравнения Власова

    Докл. АН СССР, 290:4 (1986),  777–780
  56. Дифференциальные формы в бесконечномерных пространствах и их использование в кинетических уравнениях

    Функц. анализ и его прил., 19:1 (1985),  62–63
  57. Анизотропные решения нелинейного уравнения Больцмана для максвелловских молекул

    Докл. АН СССР, 256:2 (1981),  338–342
  58. Об единственности $H$-функции Больцмана

    Докл. АН СССР, 233:5 (1977),  765–768
  59. О принципе максимума для дискретных моделей уравнения Больцмана и о связи интегралов прямых и обратных соударений уравнения Больцмана

    Докл. АН СССР, 233:4 (1977),  519–522
  60. Об одном неравенстве для выпуклых функций и об оценке интеграла столкновений уравнения Больцмана для газа упругих шаров

    Докл. АН СССР, 226:5 (1976),  997–1000
  61. О разрешимости в целом задачи Коши для некоторых дискретных моделей уравнения Больцмана

    Докл. АН СССР, 215:1 (1974),  21–23


© МИАН, 2025