Специальность ВАК:
01.01.01 (вещественный, комплексный и функциональный анализ)
Дата рождения:
12.02.1954
E-mail: Ключевые слова: линейная выпуклость,
дифференциальные уравнения бесконечного порядка,
дифференциальные операторы бесконечного порядка,
уравнения свертки в комплексной области,
выпуклость в направлениях,
аналитические функционалы,
двойственность в функциональных пространствах,
сопряженные множества,
С-выпуклость,
пространства голоморфных функций.
Основные публикации:
Знаменский С. В., “Сильная линейная выпуклость. I. Двойственность пространств голоморфных функций”, Сиб. матем. журн., 26:3 (1985), 31–43
Знаменский С. В., “Сильная линейная выпуклость. II. Существование голоморфных решений линейных систем уравнений”, Сиб. матем. журн., 29:6 (1988), 49–65
Знаменский С. В., “Пример сильно линейно выпуклой области с неспрямляемой границей”, Матем. заметки, 57:6 (1995), 851–861
Знаменский С. В., Козловская Е. А., “Критерий эпиморфности оператора свертки с точечным носителем в пространстве функций, голоморфных на связном множестве в $\mathbf C$”, Доклады Академии наук. Математика, 368:6 (1999), 737–739