RUS  ENG
Полная версия
ПЕРСОНАЛИИ

Крыжановская Наталья Владимировна

Публикации в базе данных Math-Net.Ru

  1. Быстродействующие вертикально-излучающие лазеры спектрального диапазона 1550 нм, реализованные в рамках технологии спекания пластин

    Квантовая электроника, 52:10 (2022),  878–884
  2. Сверхвысокое модовое усиление в инжекционных полосковых лазерах и микролазерах на основе квантовых точек InGaAs/GaAs

    Квантовая электроника, 52:7 (2022),  593–596
  3. Оптические свойства трехмерных островков InGaP(As), сформированных методом замещения элементов пятой группы

    Оптика и спектроскопия, 129:2 (2021),  218–222
  4. Увеличение эффективности тандема полупроводниковый лазер-оптический усилитель на основе самоорганизующихся 8s квантовых точек

    Физика и техника полупроводников, 55:12 (2021),  1223–1228
  5. Мощность насыщения оптического усилителя на основе самоорганизующихся квантовых точек

    Физика и техника полупроводников, 55:9 (2021),  820–825
  6. Учет подложки при расчете электрического сопротивления микродисковых лазеров

    Физика и техника полупроводников, 55:2 (2021),  195–200
  7. Молекулярно-пучковая эпитаксия нитевидных нанокристаллов InGaN на подложках SiC/Si(111) и Si(111): сравнительный анализ

    Письма в ЖТФ, 47:21 (2021),  32–35
  8. Увеличение оптической мощности микродисковых лазеров InGaAs/GaAs, перенесенных на кремниевую подложку методом термокомпрессии

    Письма в ЖТФ, 47:20 (2021),  3–6
  9. Исследование чувствительности микродискового лазера к изменению показателя преломления окружающей среды

    Письма в ЖТФ, 47:19 (2021),  30–33
  10. Энергопотребление при высокочастотной модуляции неохлаждаемого InGaAs/GaAs/AlGaAs-микродискового лазера

    Письма в ЖТФ, 47:13 (2021),  28–31
  11. Синтез InGaN-наноструктур развитой морфологии на кремнии: влияние температуры подложки на морфологические и оптические свойства

    Физика и техника полупроводников, 54:9 (2020),  884–887
  12. Исследование фотоотклика графена, полученного методом химического осаждения из газовой фазы

    Физика и техника полупроводников, 54:9 (2020),  833–840
  13. Предельная температура генерации микродисковых лазеров

    Физика и техника полупроводников, 54:6 (2020),  570–574
  14. MBE-grown In$_x$ Ga$_{1-x}$ As nanowires with 50% composition

    Физика и техника полупроводников, 54:6 (2020),  542
  15. Сравнительный анализ инжекционных микродисковых лазеров на основе квантовых ям InGaAsN и квантовых точек InAs/InGaAs

    Физика и техника полупроводников, 54:2 (2020),  212–216
  16. Лазерная генерация перенесенных на кремний инжекционных микродисков с квантовыми точками InAs/InGaAs/GaAs

    Письма в ЖТФ, 46:16 (2020),  3–6
  17. Микрооптопара на базе микродискового лазера и фотодетектора с активной областью на основе квантовых ям-точек

    Письма в ЖТФ, 46:13 (2020),  7–10
  18. Влияние саморазогрева на модуляционные характеристики микродискового лазера

    Письма в ЖТФ, 46:11 (2020),  3–7
  19. Оценка вклада поверхностной рекомбинации в микродисковых лазерах с помощью высокочастотной модуляции

    Физика и техника полупроводников, 53:8 (2019),  1122–1127
  20. Микромассивы кремниевых нанопилларов: формирование и резонансное отражение света

    Физика и техника полупроводников, 53:2 (2019),  216–220
  21. Использование микродисковых лазеров с квантовыми точками InAs/InGaAs для биодетектирования

    Письма в ЖТФ, 45:23 (2019),  10–13
  22. Синтез методом молекулярно-пучковой эпитаксии и свойства наноструктур InGaN разветвленной морфологии на кремниевой подложке

    Письма в ЖТФ, 45:21 (2019),  48–50
  23. Особенности вольт-амперной характеристики микродисковых лазеров на основе квантовых ям-точек InGaAs/GaAs

    Письма в ЖТФ, 45:19 (2019),  37–39
  24. Потребление энергии для высокочастотного переключения микродискового лазера с квантовыми точками

    Письма в ЖТФ, 45:16 (2019),  49–51
  25. Спектральные характеристики отражения микромассивов кремниевых нанопилларов

    Оптика и спектроскопия, 124:5 (2018),  695–699
  26. Нарушение локальной электронейтральности в квантовой яме полупроводникового лазера с асимметричными барьерными слоями

    Физика и техника полупроводников, 52:12 (2018),  1518–1526
  27. Нитевидные нанокристаллы на основе фосфидных соединений, полученные методом молекулярно-пучковой эпитаксии на поверхности кремния

    Физика и техника полупроводников, 52:11 (2018),  1304–1307
  28. Когерентный рост нитевидных нанокристаллов InP/InAsP/InP на поверхности Si(111) при молекулярно-пучковой эпитаксии

    Письма в ЖТФ, 44:3 (2018),  55–61
  29. Высокая характеристическая температура лазера на квантовых точках InAs/GaAs/InGaAsP с длиной волны излучения около 1.5 мкм, синтезированного на подложке InP

    Физика и техника полупроводников, 51:10 (2017),  1382–1386
  30. Оптические свойства метаморфной гибридной гетероструктуры вертикально излучающего лазера спектрального диапазона 1300 нм

    Физика и техника полупроводников, 51:9 (2017),  1176–1181
  31. Исследование структурных и оптических свойств слоев GaP(N), синтезированных методом молекулярно-пучковой эпитаксии на подложкаx Si(100) 4$^\circ$

    Физика и техника полупроводников, 51:2 (2017),  276–280
  32. Особенности волноводной рекомбинации в лазерных структурах с асимметричными барьерными слоями

    Физика и техника полупроводников, 51:2 (2017),  263–268
  33. Лазерные характеристики инжекционного микродиска с квантовыми точками и эффективность вывода излучения в свободное пространство

    Физика и техника полупроводников, 50:10 (2016),  1425–1428
  34. Теория мощностных характеристик лазеров на квантовой яме с асимметричными барьерными слоями: учет асимметрии заполнения электронных и дырочных состояний

    Физика и техника полупроводников, 50:10 (2016),  1380–1386
  35. Многослойные гетероструктуры для квантово-каскадных лазеров терагерцового диапазона

    Физика и техника полупроводников, 50:5 (2016),  674–678
  36. Инжекционные микродисковые лазеры спектрального диапазона 1.27 мкм

    Физика и техника полупроводников, 50:3 (2016),  393–397
  37. Лазерная генерация вертикальных микрорезонаторов с массивами квантовых точек InAs/InGaAs на длине волны 1.3 $\mu$m при оптической накачке

    Письма в ЖТФ, 42:19 (2016),  70–79
  38. Лазеры на основе квантовых точек и микрорезонаторов с модами шепчущей галереи

    Квантовая электроника, 44:3 (2014),  189–200


© МИАН, 2024