RUS  ENG
Полная версия
ВИДЕОТЕКА

Advances in Optimization and Statistics
15 мая 2014 г. 14:20, г. Москва, ИППИ РАН




[Additive Regularization for Probabilistic Topic Modelling]

К. В. Воронцов

Лаборатория структурных методов анализа данных в предсказательном моделировании при МФТИ (ПреМоЛаб), г. Москва


http://www.youtube.com/watch?v=ldqGUpd0qLQ

Аннотация: Probabilistic topic modeling is a powerful tool for statistical text analysis, which has been recently developing mainly within the framework of graphical models and Bayesian inference. We propose an alternative approach - Additive Regularization of Topic Models (ARTM). Our framework is free of redundant probabilistic assumptions and dramatically simplifies the inference of multi-objective topic models. Also we hold a non-probabilistic view of the EM-algorithm as a simple iteration method for solving a system of equations for a stationary point of the optimization problem.

Язык доклада: английский


© МИАН, 2024