|
SEMINARS |
Complex analysis and mathematical physics
|
|||
|
Geometry of iterated variations in the problem of deformation quantisation of field models A. V. Kiselev Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen |
|||
Abstract: The Batalin-Vilkovisky supergeometry relies on the introduction of canonical conjugate pairs of dependent variables called the (anti)fields and (anti)ghosts. Understanding their variations as singular linear integral operators – acting on some suitable spaces of base functionals such as the action functional – is very profitable. In the first part of this talk I shall explain the geometry of integrations by parts (e.g., in the course of derivation of the Euler–Lagrange equations of motion). This will reveal why, whenever understood properly, the iterated variations are ( In the second part of this talk we consider the deformation quantisation problem for field theory models and we show how the geometry of iterated variations works in that problem's solution. In particular, I shall derive and substantiate the variational analogue of noncommutative but associative Moyal's |