|
VIDEO LIBRARY |
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
|
|||
|
Uniform boundness of Steklov's operator in variable exponent Morrey space A. Ghorbanalizadeh Institute for Advanced Studies in Basic Sciences (IASBS), Iran |
|||
Abstract: Let \begin{equation} \label{N352:gag21} 1\le p_{-} \leq p(x)\leq p_{+}<\infty, \end{equation} where $p_{-}:=\operatorname{ess\,\inf}_{x \in I_0}p(x) \ge 1$, $p_{+}:=\operatorname{ess\,\sup}_{x \in I_0}p(x)<\infty$, and also suppose the \begin{equation} \label{N352:gag22} |p(x)-p(y)|\leq \frac{A}{-\ln|x-y|}\mspace{2mu}, \qquad |x-y|\leq \frac{1}{2}\mspace{2mu}, \quad x,y\in I_{0}. \end{equation} Let $$ I_{p(\,\cdot\,),\lambda(\,\cdot\,)}(f):= \sup_{\substack{x \in I_0 \\ 0< r <2 \pi}} r^{-\lambda(x)} \int_{\widetilde{I}(x,r)}|f|^{p(y)}\,dy < \infty. $$ The norm of space $$ \|f\|_{1}:= \inf \biggl\{\eta>0: I_{p(\,\cdot\,),\lambda(\,\cdot\,)}\biggl(\frac{f}{\eta}\biggr)<1 \biggr\} , $$ and $$ \|f\|_{2}:= \sup_{\substack{x \in I_0 \\ 0< r <2 \pi}} r^{-\frac{\lambda(x)}{p(x)}}\|f \chi_{\widetilde{I}(x,r)}\|_{L^{p(\,\cdot\,)}(I_0)} . $$ Since two norms coincide, we put \begin{equation*} \|f\|_{M^{p(\,\cdot\,),\lambda(\,\cdot\,)}(I_0)} :=\|f\|_{1} = \|f\|_{2}. \end{equation*} The Steklov operator is defined as $$ s_{h}(f)(x) :=\frac{1}{h} \int_{0}^{h} f(x+t)\,dt. $$ Our main result is following. Theorem. Let This contribution is based on recent joint work with Professor Vagif Guliyev. Language: English References
|