|
VIDEO LIBRARY |
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
|
|||
|
On two S. M. Nikol'skii problems G. Kalyabin Samara State Technical University |
|||
Abstract: 1. Equivalence of different spherical moduli of smoothness. Let \begin{equation} \label{442:eq1} \Delta_t f(\mu):= (\sin t)^{2-n} \int_{(\sigma,\mu)=\cos t} (f(\sigma) - f(\mu))\, d\sigma \end{equation} where the integration is taken over the In 1981 M. Wehrens [1] considered the so-called “amplified” moduli of smoothness \begin{equation} \label{442:eq2} \omega^{\star}_k (\delta; f; L_p):= \sup_{0<t_1, t_2 \dots t_k\le \delta} \|\Delta_{t_1} (\Delta_{t_2}(\,\dots (\Delta_{t_k} f(\mu) )\dots ) \|_p, \qquad k\in \mathbb{N},\quad \delta<\pi/2, \end{equation} and proved that this quantity is equivalent to J. Peetre \begin{equation} \label{442:eq3} K(\delta^{2k}, f; L_p, W_p^{2k}):= \inf \{ \delta^{2k}\|{\mathbb{D}^k}g\|_p + \|f-g\|_p: g \in C^{\infty}(S^{n-1}) \} \end{equation} with Theorem 1. There is a constant \begin{equation} \label{442:eq4} c^{-1} \omega^{\star}_k (\delta; f; L_p) \le K(\delta^{2k}, f; L_p, W_p^{2k}) \le c \omega_k (\delta; f; L_p); \end{equation} in particular, the ordinary and the amplified moduli of smoothness are equivalent to each other. The proof uses the Strichartz theorem on multipliers with respect to spherical harmonics and the estimates of derivatives (over positive parameter 2. On functions whose differences belong to Let \begin{equation} \label{442:eq5} \| f \|_{L_p({I})} := \left(\int_I \ |f(x)|^p \ dx \right)^{1/p},\qquad \| f \|_{L_{\infty}(I)} := \operatorname{ess\,sup}\limits_{x\in I}\ |f(x)|. \end{equation} Introduce a difference of $$ \Delta^k_hf(x):= \Delta_h\left(\Delta^{k-1}_hf(x+h) -\Delta^{k-1}_h f(x)\right),\qquad h\in (0, 1/k),\quad x\in (0, 1-kh), $$ for which one has the estimates $\|\Delta^k_hf(\,\cdot\,)\|_{L_p(0, 1-kh)} \le c(p,k) \|f(\,\cdot\,)\|_{L_p(I)}$. In the 1970s, Sergey Mikhailovich Nikol'skii raised the following question (according to O. V. Besov): if Definition. Given two finite collections of numbers \begin{equation} \label{442:eq6} \begin{gathered} \{\beta\}\equiv \{\beta_j\}_{j=0}^k,\qquad \{\tau\}\equiv \{\tau_j\}_{j=0}^k,\qquad \beta_j\in\mathbb{C}\setminus \{0\},\qquad \tau_j \in \mathbb{R}, \\ j \in \{0, 1, \dots k\},\qquad k\ge 1, \qquad \tau_0<\tau_1<\tau_2 < \dots <\tau_k. \end{gathered} \end{equation} Denote \begin{equation} \label{442:eq7} \begin{gathered} {\mathcal{D}}^k_h\equiv {\mathcal{D}}^k_{h, \{ \beta \} \{ \tau \}}\colon \mathfrak{M}(I) \to \mathfrak{M}(I_h), \qquad I_h:=(-\tau_0h, 1- \tau_kh); \\ {\mathcal{D}}^k_h f (x):= \sum_{j=0}^k \beta_j f(x+\tau_jh), \qquad 0<h<H, \quad x\in I_h. \end{gathered} \end{equation} Theorem 2. Let Remark. In the proof only the classical results on the measurable functions [6] are involved. Remark. Simple examples show that the number Remark. As for multidimensional case (say for “good” bounded domains in The work was supported by grant of Russian Foundation of Basic Research, project No 14-01-00684. The author is deeply grateful to O. V. Besov and V. I. Burenkov for their interest to this work and a number of valuable remarks. Language: English References
|