|
VIDEO LIBRARY |
À.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
|
|||
|
The distribution of lattice points on the hyperboloid V. A. Bykovskii Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences |
|||
Abstract: Let $$ K_{\mathbb{Z}}(d)\,=\,\bigl\{(a,b,c)\in \mathbb{Z}^{3}\,\:\,b^{2}-4ac\,=\,d\bigr\} $$ the set of lattice points lying on the hyperboloid $$ \bigl\{(x_{1},x_{2},x_{3})\in \mathbb{R}^{3}\,:\,x_{2}^{2}-4x_{1}x_{2}\,=\,d\bigr\}, $$ which is hyperbolic in the case $$ K_{\mathbb{Z}}^{+}(d)\,=\,\bigl\{(a,b,c)\in K_{\mathbb{Z}}(d)\,\:\,c>0\bigr\}. $$ The set $$ \sum\limits_{c=1}^{+\infty}\biggl(\,\sum\limits_{b \pmod{2c}}\delta_{4c}(b^{2}-d)\biggr)\frac{1}{c^{s}}\,=\,\frac{\zeta(s)}{\zeta(2s)}\,G_{d}(s)\quad (d\ne n^{2}) $$ converges absolutely in the half -plane Theorem. Suppose that $$ \sum\limits_{(a,b,c)\in K_{\mathbb{Z}}^{+}(d)}\varphi\biggl(\frac{b}{2c},\frac{\sqrt{|d|}}{2c}\biggr)\,= $$ $$ =\,\frac{3}{\pi^{2\mathstrut}}\,\sqrt{|d|}G_{d}(1)\int_{-\infty}^{+\infty}\int_{0}^{+\infty}\varphi(x,y)\,\frac{dx\,dy}{y^{2\mathstrut}}\,+\,O_{\varphi,\varepsilon}\bigl(|d|^{1/2-1/12+\varepsilon}\bigr). $$ Language: English |