|
VIDEO LIBRARY |
À.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
|
|||
|
On the analytic continuation of Lauricella function S. I. Bezrodnykh Federal Research Center "Computer Science and Control" of Russian Academy of Sciences |
|||
Abstract: One of the generalizations of Gaussian hypergeometric function $$ F_{D}^{(N)}\,(\mathbf{a}; b, c; \mathbf{z}\,)=\sum\limits_{|\bf{k}| = 0}^{\infty} \,\frac{(b)_{|\bf{k}|} (a_{1})_{k_{1}} \cdots (a_{N})_{k_{N}}} {(c)_{|\bf{k}|} k_{1}! \cdots k_{N}!}z_{1}^{k_{1}} \cdots z_{N}^{k_{N}},\, $$ where In the talk, we construct the system of formulae that continue analytically the function [1] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili. Rendiconti Circ. math. Palermo. 7 (1893). P. 111 – 158. [2] H. Exton, Multiple hypergeometric functions and application. N.-Y., J. Willey & Sons inc., 1976. [3] S.I. Bezrodnykh, Analytic continuation formulas and Jacobi- type relations for Lauricella function. Doklady Math. 93:2 (2016). P. 129 – 134. Language: English |