|
SEMINARS |
Seminar on Complex Analysis (Gonchar Seminar)
|
|||
|
On some spectral properties of the F. Haslinger Faculty of Mathematics, University of Vienna |
|||
Abstract: We consider the $$ N\colon L^2_{(0,q)}(\Omega ) \longrightarrow L^2_{(0,q)}(\Omega ), $$ where $$N_\varphi\colon L^2_{(0,q)}(\Omega , e^{-\varphi}) \longrightarrow L^2_{(0,q)}(\Omega , e^{-\varphi}),$$ where In addition, we describe spectral properties of the complex Laplacian $$\mathcal{A}^2 (\mathbb{C}^n, e^{-\varphi }) =\{ f : \mathbb{C}^n \longrightarrow \mathbb{C} \ {\text{entire}} \ : \int_{\mathbb{C}^n} |f|^2 e^{-\varphi }\, d\lambda < \infty \}$$ is infinite-dimensional, which depends on the behavior at infinity of the eigenvalues of the Levi matrix of the weight function We discuss necessary conditions for compactness of the corresponding Language: English |